ANS is committed to advancing, fostering, and promoting the development and application of nuclear sciences and technologies to benefit society.
Explore the many uses for nuclear science and its impact on energy, the environment, healthcare, food, and more.
Division Spotlight
Reactor Physics
The division's objectives are to promote the advancement of knowledge and understanding of the fundamental physical phenomena characterizing nuclear reactors and other nuclear systems. The division encourages research and disseminates information through meetings and publications. Areas of technical interest include nuclear data, particle interactions and transport, reactor and nuclear systems analysis, methods, design, validation and operating experience and standards. The Wigner Award heads the awards program.
Meeting Spotlight
Nuclear Energy Conference & Expo (NECX)
September 8–11, 2025
Atlanta, GA|Atlanta Marriott Marquis
Standards Program
The Standards Committee is responsible for the development and maintenance of voluntary consensus standards that address the design, analysis, and operation of components, systems, and facilities related to the application of nuclear science and technology. Find out What’s New, check out the Standards Store, or Get Involved today!
Latest Magazine Issues
Jun 2025
Jan 2025
Latest Journal Issues
Nuclear Science and Engineering
August 2025
Nuclear Technology
July 2025
Fusion Science and Technology
Latest News
The when, where, why, and how of RIPB design
The American Nuclear Society’s Risk-informed, Performance-based Principles and Policy Committee (RP3C) held another presentation in its monthly Community of Practice (CoP) series.
Watch the full webinar here.
M. C. White, R. C. Little, M. B. Chadwick, P. G. Young, R. E. MacFarlane
Nuclear Science and Engineering | Volume 144 | Number 2 | June 2003 | Pages 174-189
Technical Paper | doi.org/10.13182/NSE144-174
Articles are hosted by Taylor and Francis Online.
This is the second of two companion papers. The first paper describes model calculations and nuclear data evaluations of photonuclear reactions on isotopes of C, O, Al, Si, Ca, Fe, Cu, Ta, W, and Pb for incident photon energies up to 150 MeV. This paper describes the steps taken to process these files into transport libraries and to update the Monte Carlo N-Particle (MCNP) and MCNPX radiation transport codes to use tabular photonuclear reaction data. The evaluated photonuclear data files are created in the standard evaluated nuclear data file (ENDF) format. These files must be processed by the NJOY data processing system into A Compact ENDF (ACE) files suitable for radiation transport calculations. MCNP and MCNPX have been modified to use these new data in a self-consistent and fully integrated manner. Verification problems were used at each step along the path to check the integrity of the methodology. The resulting methodology and tools provide a comprehensive system for using photonuclear data in radiation transport calculations. Also described are initial validation simulations used to benchmark several of the photonuclear transport tables.