ANS is committed to advancing, fostering, and promoting the development and application of nuclear sciences and technologies to benefit society.
Explore the many uses for nuclear science and its impact on energy, the environment, healthcare, food, and more.
Explore membership for yourself or for your organization.
Conference Spotlight
Nuclear Energy Conference & Expo (NECX)
September 8–11, 2025
Atlanta, GA|Atlanta Marriott Marquis
Standards Program
The Standards Committee is responsible for the development and maintenance of voluntary consensus standards that address the design, analysis, and operation of components, systems, and facilities related to the application of nuclear science and technology. Find out What’s New, check out the Standards Store, or Get Involved today!
Latest Magazine Issues
Aug 2025
Jan 2025
Latest Journal Issues
Nuclear Science and Engineering
September 2025
Nuclear Technology
Fusion Science and Technology
August 2025
Latest News
Powering the future: How the DOE is fueling nuclear fuel cycle research and development
As global interest in nuclear energy surges, the United States must remain at the forefront of research and development to ensure national energy security, advance nuclear technologies, and promote international cooperation on safety and nonproliferation. A crucial step in achieving this is analyzing how funding and resources are allocated to better understand how to direct future research and development. The Department of Energy has spearheaded this effort by funding hundreds of research projects across the country through the Nuclear Energy University Program (NEUP). This initiative has empowered dozens of universities to collaborate toward a nuclear-friendly future.
D. E. Beller, K. O. Ott, W. K. Terry
Nuclear Science and Engineering | Volume 97 | Number 3 | November 1987 | Pages 175-189
Technical Paper | doi.org/10.13182/NSE87-A23500
Articles are hosted by Taylor and Francis Online.
A new conceptual design of a fusion reactor blanket simulation facility has been developed. This design follows the principles that have been successfully employed in the Purdue Fast Breeder Blanket Facility (FBBF), where experiments have resulted in the discovery of substantial deficiencies in neutronics predictions. With this design, discrepancies between calculation and experimental data can be nearly fully attributed to calculation methods because design deficiencies that could affect results are insignificant. The conceptual design of this FBBF analog, the Fusion Reactor Blanket Facility, is presented. Essential features are the cylindrical geometry and a distributed line source of 14-MeV neutrons with a cosine-shaped intensity distribution. The source design consists of a deuteron beam sweeping over an elongated titanium-tritide target. To predict the character of the neutron flux this source will produce, neutronics analyses were performed. Predictions for two- and one-dimensional calculations are compared for two blanket compositions. Expected deviations from one-dimensional predictions, which are due to source anisotropy and blanket asymmetry, are shown to be minimal. Therefore, one-dimensional calculations can be performed in fine detail as a basis for the generation of accurate coarse group constants for two-dimensional predictions. The proposed design of this fusion blanket facility should allow straightforward interpretation of experimental results in terms of computational and data deficiencies.