ANS is committed to advancing, fostering, and promoting the development and application of nuclear sciences and technologies to benefit society.
Explore the many uses for nuclear science and its impact on energy, the environment, healthcare, food, and more.
Explore membership for yourself or for your organization.
Conference Spotlight
2025 ANS Winter Conference & Expo
November 9–12, 2025
Washington, DC|Washington Hilton
Standards Program
The Standards Committee is responsible for the development and maintenance of voluntary consensus standards that address the design, analysis, and operation of components, systems, and facilities related to the application of nuclear science and technology. Find out What’s New, check out the Standards Store, or Get Involved today!
Latest Magazine Issues
Oct 2025
Jul 2025
Latest Journal Issues
Nuclear Science and Engineering
November 2025
Nuclear Technology
Fusion Science and Technology
Latest News
Leading the charge: INL’s role in advancing HALEU production
Idaho National Laboratory is playing a key role in helping the U.S. Department of Energy meet near-term needs by recovering HALEU from federal inventories, providing critical support to help lay the foundation for a future commercial HALEU supply chain. INL also supports coordination of broader DOE efforts, from material recovery at the Savannah River Site in South Carolina to commercial enrichment initiatives.
M. B. Chadwick, P. G. Young, R. E. MacFarlane, M. C. White, R. C. Little
Nuclear Science and Engineering | Volume 144 | Number 2 | June 2003 | Pages 157-173
Technical Paper | doi.org/10.13182/NSE144-157
Articles are hosted by Taylor and Francis Online.
This paper describes model calculations and nuclear data evaluations of photonuclear reactions on isotopes of C, O, Al, Si, Ca, Fe, Cu, Ta, W, and Pb for incident photon energies up to 150 MeV. The calculations, using the GNASH code, include giant-dipole resonance and quasi-deuteron models for photoabsorption. The emission of secondary particles and gamma rays is computed using preequilibrium theory, together with an open-ended sequence of compound nucleus decays using the Hauser-Feshbach theory. The accuracy of the calculated and evaluated cross sections is assessed through extensive comparisons with measured cross sections, average neutron multiplicities, and energy-dependent emission spectra. The evaluated nuclear data files (ENDF) facilitate radiation transport studies of the importance of photonuclear reactions in a number of technologies including photoneutrons produced in electron/photon accelerators, shielding studies, and nondestructive detection of nuclear materials. A companion paper describes developments in the MCNP and MCNPX codes to utilize these data in transport simulations.