ANS is committed to advancing, fostering, and promoting the development and application of nuclear sciences and technologies to benefit society.
Explore the many uses for nuclear science and its impact on energy, the environment, healthcare, food, and more.
Explore membership for yourself or for your organization.
Conference Spotlight
2026 ANS Annual Conference
May 31–June 3, 2026
Denver, CO|Sheraton Denver
Latest Magazine Issues
Feb 2026
Jul 2025
Latest Journal Issues
Nuclear Science and Engineering
February 2026
Nuclear Technology
January 2026
Fusion Science and Technology
Latest News
DOE, General Matter team up for new fuel mission at Hanford
The Department of Energy's Office of Environmental Management (EM) on Tuesday announced a partnership with California-based nuclear fuel company General Matter for the potential use of the long-idle Fuels and Materials Examination Facility (FMEF) at the Hanford Site in Washington state.
According to the announcement, the DOE and General Matter have signed a lease to explore the FMEF's potential to be used for advanced nuclear fuel cycle technologies and materials, in part to help satisfy the predicted future requirements of artificial intelligence.
D. D. Ebert, J. D. Clement, W. M. Stacey, Jr.
Nuclear Science and Engineering | Volume 55 | Number 4 | December 1974 | Pages 368-379
Technical Paper | doi.org/10.13182/NSE74-A23470
Articles are hosted by Taylor and Francis Online.
An investigation of the kinetic characteristics of coupled-core reactors using noise analysis techniques is undertaken. It is shown that time- and frequency-domain methods of noise analysis are closely related and their particular space-dependent forms arise from the manner in which the impulse response or transfer function is approximated. Using an analytical and two modal expansion approximations of the neutron noise, the significance of the coherence function frequency characteristics under varying hypothetical detector placements and core conditions is interpreted. Coherence function computational results using a one-dimensional, two neutron-energy group diffusion theory model provide good agreement with measurements.