ANS is committed to advancing, fostering, and promoting the development and application of nuclear sciences and technologies to benefit society.
Explore the many uses for nuclear science and its impact on energy, the environment, healthcare, food, and more.
Explore membership for yourself or for your organization.
Conference Spotlight
2026 ANS Annual Conference
May 31–June 3, 2026
Denver, CO|Sheraton Denver
Latest Magazine Issues
Feb 2026
Jul 2025
Latest Journal Issues
Nuclear Science and Engineering
February 2026
Nuclear Technology
January 2026
Fusion Science and Technology
Latest News
DOE, General Matter team up for new fuel mission at Hanford
The Department of Energy's Office of Environmental Management (EM) on Tuesday announced a partnership with California-based nuclear fuel company General Matter for the potential use of the long-idle Fuels and Materials Examination Facility (FMEF) at the Hanford Site in Washington state.
According to the announcement, the DOE and General Matter have signed a lease to explore the FMEF's potential to be used for advanced nuclear fuel cycle technologies and materials, in part to help satisfy the predicted future requirements of artificial intelligence.
H. D. Warren, N. H. Shah
Nuclear Science and Engineering | Volume 54 | Number 4 | August 1974 | Pages 395-415
Technical Paper | doi.org/10.13182/NSE74-A23434
Articles are hosted by Taylor and Francis Online.
A general calculational model describing the effects of neutrons and gamma rays on self-powered prompt-responding coaxial in-core radiation detectors is presented. The model accounts for external gamma-ray interactions within a detector and the subsequent emissions of Compton electrons and photoelectrons. The model also includes neutron-capture gamma-ray and internal-conversion electron emissions. The effect on a detector’s sensitivity of space charge within its insulator is considered. A pseudopotential on the central electrode is introduced to account for Z-dependent variations in the space-charge distribution. Calculated neutron and gamma sensitivities of several in-core detectors are compared with experimental sensitivities. The comparisons are sufficiently satisfactory to label the model as successful in its predictions.