ANS is committed to advancing, fostering, and promoting the development and application of nuclear sciences and technologies to benefit society.
Explore the many uses for nuclear science and its impact on energy, the environment, healthcare, food, and more.
Division Spotlight
Thermal Hydraulics
The division provides a forum for focused technical dialogue on thermal hydraulic technology in the nuclear industry. Specifically, this will include heat transfer and fluid mechanics involved in the utilization of nuclear energy. It is intended to attract the highest quality of theoretical and experimental work to ANS, including research on basic phenomena and application to nuclear system design.
Meeting Spotlight
2025 ANS Annual Conference
June 15–18, 2025
Chicago, IL|Chicago Marriott Downtown
Standards Program
The Standards Committee is responsible for the development and maintenance of voluntary consensus standards that address the design, analysis, and operation of components, systems, and facilities related to the application of nuclear science and technology. Find out What’s New, check out the Standards Store, or Get Involved today!
Latest Magazine Issues
May 2025
Jan 2025
Latest Journal Issues
Nuclear Science and Engineering
July 2025
Nuclear Technology
June 2025
Fusion Science and Technology
Latest News
BREAKING NEWS: Trump issues executive orders to overhaul nuclear industry
The Trump administration issued four executive orders today aimed at boosting domestic nuclear deployment ahead of significant growth in projected energy demand in the coming decades.
During a live signing in the Oval Office, President Donald Trump called nuclear “a hot industry,” adding, “It’s a brilliant industry. [But] you’ve got to do it right. It’s become very safe and environmental.”
L. Erradi, A. Santamarina, O. Litaize
Nuclear Science and Engineering | Volume 144 | Number 1 | May 2003 | Pages 47-73
Technical Paper | doi.org/10.13182/NSE144-47
Articles are hosted by Taylor and Francis Online.
The contributions of different physical phenomena to the reactivity temperature coefficient (RTC) in typical light water moderated lattices have been assessed. Using the APOLLO2 code with the CEA93 cross-section library based on JEF2.2 data, we have analyzed the main French experiments available on the RTC: the CREOLE and MISTRAL experiments. In these experiments performed in the EOLE critical facility located at CEA/Cadarache, the RTC has been measured in both UO2 and UO2-PuO2 pressurized water reactor-type lattices. Our calculations have shown that the calculation error in UO2 lattices is <1 pcm/°C, which is considered as the target accuracy for reactor design calculations. On the other hand the calculation error in mixed oxide lattices is more significant in both low- and high-temperature ranges: An average error of -2 ± 0.5 pcm/°C is observed at low temperatures, and an error of +3 ± 2 pcm/°C is obtained for temperatures >250°C. Our analysis has shown that the negative error in the low-temperature range is linked to the thermal spectrum shift effect, which is strongly dependent on the thermal shapes of the cross sections of plutonium isotopes, whereas the positive error in the high-temperature range is mainly linked to the water density effects.