ANS is committed to advancing, fostering, and promoting the development and application of nuclear sciences and technologies to benefit society.
Explore the many uses for nuclear science and its impact on energy, the environment, healthcare, food, and more.
Explore membership for yourself or for your organization.
Conference Spotlight
2026 ANS Annual Conference
May 31–June 3, 2026
Denver, CO|Sheraton Denver
Latest Magazine Issues
Feb 2026
Jul 2025
Latest Journal Issues
Nuclear Science and Engineering
February 2026
Nuclear Technology
January 2026
Fusion Science and Technology
Latest News
DOE, General Matter team up for new fuel mission at Hanford
The Department of Energy's Office of Environmental Management (EM) on Tuesday announced a partnership with California-based nuclear fuel company General Matter for the potential use of the long-idle Fuels and Materials Examination Facility (FMEF) at the Hanford Site in Washington state.
According to the announcement, the DOE and General Matter have signed a lease to explore the FMEF's potential to be used for advanced nuclear fuel cycle technologies and materials, in part to help satisfy the predicted future requirements of artificial intelligence.
P. T. Guenther, P. A. Moldauer, A. B. Smith, J. F. Whalen
Nuclear Science and Engineering | Volume 54 | Number 3 | July 1974 | Pages 273-285
Technical Paper | doi.org/10.13182/NSE74-A23418
Articles are hosted by Taylor and Francis Online.
Elastic and inelastic neutron scattering cross sections of cobalt were measured from incident energies of 1.8 to 4.0 MeV including the excitation of states at 1.10 ± 0.01, 1.20 ± 0.01, 1.30 ± 0.01, 1.43 ± 0.01, 1.46 ± 0.02, 1.72 ± 0.02, 2.06 ± 0.02, 2.09 ± 0.02, 2.16 ± 0.03, 2.35 ± 0.05, and 2.50 ± 0.05 MeV. Total neutron cross sections were measured from 2.0 to 4.5 MeV. The experimental results and previously reported values are used to deduce an optical-statistical model which is descriptive of measured values to ∼20.0 MeV. The observed inelastic scattering cross sections are related to the level structure of the target isotope and are shown consistent with a nuclear structure model based upon a proton hole in the ƒ7/2 shell strongly coupled to a spherical core. A resolution to the previous ambiguities in fπ assignments is suggested. The experimental and calculational results are compared with the cross-section values given by ENDF/B-III.