ANS is committed to advancing, fostering, and promoting the development and application of nuclear sciences and technologies to benefit society.
Explore the many uses for nuclear science and its impact on energy, the environment, healthcare, food, and more.
Division Spotlight
Robotics & Remote Systems
The Mission of the Robotics and Remote Systems Division is to promote the development and application of immersive simulation, robotics, and remote systems for hazardous environments for the purpose of reducing hazardous exposure to individuals, reducing environmental hazards and reducing the cost of performing work.
Meeting Spotlight
International Conference on Mathematics and Computational Methods Applied to Nuclear Science and Engineering (M&C 2025)
April 27–30, 2025
Denver, CO|The Westin Denver Downtown
Standards Program
The Standards Committee is responsible for the development and maintenance of voluntary consensus standards that address the design, analysis, and operation of components, systems, and facilities related to the application of nuclear science and technology. Find out What’s New, check out the Standards Store, or Get Involved today!
Latest Magazine Issues
Apr 2025
Jan 2025
Latest Journal Issues
Nuclear Science and Engineering
June 2025
Nuclear Technology
Fusion Science and Technology
May 2025
Latest News
Ariz. governor vetoes “fast track” bill for nuclear
Gov. Katie Hobbs put the brakes on legislation that would have eliminated some of Arizona’s regulations and oversight of small modular reactors, technology that is largely under consideration by data centers and heavy industrial power users.
Hugh K. Clark
Nuclear Science and Engineering | Volume 54 | Number 1 | May 1974 | Pages 55-71
Technical Paper | doi.org/10.13182/NSE74-A23393
Articles are hosted by Taylor and Francis Online.
The approximation inherent in using cell-averaged homogenized cross sections in computations for heterogeneous reactors is investigated for slab reactors by discrete integral transport (DIT) theory. Small, but significant, differences in reactivity and anisotropies in migration area are found. The DIT technique is extended to include an exact asymptotic reactor boundary condition and a separable transverse flux. Approximate solutions are investigated in which a reactor is subdivided into a number of zones with the coupling between zones expressed in terms of the directional currents at the interfaces. The sticking probabilities for these currents are derived from Taylor expansions of the source through linear terms. Generally good results are obtained when the zones correspond with the cells in a reactor.