ANS is committed to advancing, fostering, and promoting the development and application of nuclear sciences and technologies to benefit society.
Explore the many uses for nuclear science and its impact on energy, the environment, healthcare, food, and more.
Explore membership for yourself or for your organization.
Conference Spotlight
2026 ANS Annual Conference
May 31–June 3, 2026
Denver, CO|Sheraton Denver
Standards Program
The Standards Committee is responsible for the development and maintenance of voluntary consensus standards that address the design, analysis, and operation of components, systems, and facilities related to the application of nuclear science and technology. Find out What’s New, check out the Standards Store, or Get Involved today!
Latest Magazine Issues
Dec 2025
Jul 2025
Latest Journal Issues
Nuclear Science and Engineering
January 2026
Nuclear Technology
December 2025
Fusion Science and Technology
November 2025
Latest News
AI at work: Southern Nuclear’s adoption of Copilot agents drives fleet forward
Southern Nuclear is leading the charge in artificial intelligence integration, with employee-developed applications driving efficiencies in maintenance, operations, safety, and performance.
The tools span all roles within the company, with thousands of documented uses throughout the fleet, including improved maintenance efficiency, risk awareness in maintenance activities, and better-informed decision-making. The data-intensive process of preparing for and executing maintenance operations is streamlined by leveraging AI to put the right information at the fingertips for maintenance leaders, planners, schedulers, engineers, and technicians.
M. G. Zaalouk, A. M. Mitry, W. C. Peterson
Nuclear Science and Engineering | Volume 54 | Number 1 | May 1974 | Pages 1-9
Technical Paper | doi.org/10.13182/NSE74-A23387
Articles are hosted by Taylor and Francis Online.
Normally a boiling water reactor operates in the nucleate region at a quiescent point on the boiling curve. Considering small variations which occur about the quiescent operating point, the fuel element temperature dynamics can be properly described by a transfer function relating incremental variation in the fuel element surface temperature and heat rate generated within. In this work transfer functions are derived to represent the heat transfer dynamics for plate and cylindrical fuel elements under boiling conditions. The heat rate generation is taken to be nonuniform and the special case of uniform heat is deduced. Computational results are presented for typical BWR fuel elements under different operating conditions.