ANS is committed to advancing, fostering, and promoting the development and application of nuclear sciences and technologies to benefit society.
Explore the many uses for nuclear science and its impact on energy, the environment, healthcare, food, and more.
Explore membership for yourself or for your organization.
Conference Spotlight
2026 ANS Annual Conference
May 31–June 3, 2026
Denver, CO|Sheraton Denver
Latest Magazine Issues
Feb 2026
Jul 2025
Latest Journal Issues
Nuclear Science and Engineering
February 2026
Nuclear Technology
January 2026
Fusion Science and Technology
Latest News
DOE, General Matter team up for new fuel mission at Hanford
The Department of Energy's Office of Environmental Management (EM) on Tuesday announced a partnership with California-based nuclear fuel company General Matter for the potential use of the long-idle Fuels and Materials Examination Facility (FMEF) at the Hanford Site in Washington state.
According to the announcement, the DOE and General Matter have signed a lease to explore the FMEF's potential to be used for advanced nuclear fuel cycle technologies and materials, in part to help satisfy the predicted future requirements of artificial intelligence.
M. G. Zaalouk, A. M. Mitry, W. C. Peterson
Nuclear Science and Engineering | Volume 54 | Number 1 | May 1974 | Pages 1-9
Technical Paper | doi.org/10.13182/NSE74-A23387
Articles are hosted by Taylor and Francis Online.
Normally a boiling water reactor operates in the nucleate region at a quiescent point on the boiling curve. Considering small variations which occur about the quiescent operating point, the fuel element temperature dynamics can be properly described by a transfer function relating incremental variation in the fuel element surface temperature and heat rate generated within. In this work transfer functions are derived to represent the heat transfer dynamics for plate and cylindrical fuel elements under boiling conditions. The heat rate generation is taken to be nonuniform and the special case of uniform heat is deduced. Computational results are presented for typical BWR fuel elements under different operating conditions.