ANS is committed to advancing, fostering, and promoting the development and application of nuclear sciences and technologies to benefit society.
Explore the many uses for nuclear science and its impact on energy, the environment, healthcare, food, and more.
Explore membership for yourself or for your organization.
Conference Spotlight
2026 Annual Conference
May 31–June 3, 2026
Denver, CO|Sheraton Denver
Standards Program
The Standards Committee is responsible for the development and maintenance of voluntary consensus standards that address the design, analysis, and operation of components, systems, and facilities related to the application of nuclear science and technology. Find out What’s New, check out the Standards Store, or Get Involved today!
Latest Magazine Issues
Dec 2025
Jul 2025
Latest Journal Issues
Nuclear Science and Engineering
December 2025
Nuclear Technology
Fusion Science and Technology
November 2025
Latest News
Deep Fission to break ground this week
With about seven months left in the race to bring DOE-authorized test reactors on line by July 4, 2026, via the Reactor Pilot Program, Deep Fission has announced that it will break ground on its associated project on December 9 in Parsons, Kansas. It’s one of many companies in the program that has made significant headway in recent months.
Christian Aussourd
Nuclear Science and Engineering | Volume 143 | Number 3 | March 2003 | Pages 281-290
Technical Paper | doi.org/10.13182/NSE03-A2336
Articles are hosted by Taylor and Francis Online.
Complementary methods may be used to solve the neutron transport problem. When only a small amount of information is needed, the most efficient method is obviously Monte Carlo. However, when perfect knowledge of the full phase-space is required, it is worth using a deterministic technique. Nevertheless, this memory and CPU time intensive approach may soon overwhelm even the most powerful computer. To deal with these issues, an adapted mesh refinement transport scheme was developed that solely retains active areas of a geometry. The computer code Styx, built on this efficient set of numerical methods, specially designed and tuned to run on such a tree-based topology, is presented. A test case subset, representative of the wide spectrum of multidimensional applications it covers, is then analyzed.