ANS is committed to advancing, fostering, and promoting the development and application of nuclear sciences and technologies to benefit society.
Explore the many uses for nuclear science and its impact on energy, the environment, healthcare, food, and more.
Division Spotlight
Nuclear Installations Safety
Devoted specifically to the safety of nuclear installations and the health and safety of the public, this division seeks a better understanding of the role of safety in the design, construction and operation of nuclear installation facilities. The division also promotes engineering and scientific technology advancement associated with the safety of such facilities.
Meeting Spotlight
International Conference on Mathematics and Computational Methods Applied to Nuclear Science and Engineering (M&C 2025)
April 27–30, 2025
Denver, CO|The Westin Denver Downtown
Standards Program
The Standards Committee is responsible for the development and maintenance of voluntary consensus standards that address the design, analysis, and operation of components, systems, and facilities related to the application of nuclear science and technology. Find out What’s New, check out the Standards Store, or Get Involved today!
Latest Magazine Issues
Apr 2025
Jan 2025
Latest Journal Issues
Nuclear Science and Engineering
June 2025
Nuclear Technology
Fusion Science and Technology
May 2025
Latest News
Argonne’s METL gears up to test more sodium fast reactor components
Argonne National Laboratory has successfully swapped out an aging cold trap in the sodium test loop called METL (Mechanisms Engineering Test Loop), the Department of Energy announced April 23. The upgrade is the first of its kind in the United States in more than 30 years, according to the DOE, and will help test components and operations for the sodium-cooled fast reactors being developed now.
W. Jaschik, L W. Seifritz
Nuclear Science and Engineering | Volume 53 | Number 1 | January 1974 | Pages 61-78
Technical Paper | doi.org/10.13182/NSE74-A23330
Articles are hosted by Taylor and Francis Online.
A sophisticated model is presented for the calculation of prompt-response self-powered neutron (SPN) detectors used for stationary as well as nonstationary neutron flux measurements in nuclear reactor cores. The technique recommended for calculating the unit sensitivity in terms of A/(cm) per unit flux takes the following into account:, neutron self-shielding factor of the emitter, flux depression correction, Compton and photoelectron production rate due to self-absorption of the gamma-ray cascade emitted immediately after neutron capture, electron escape probability from the emitterm, loss of electron energy within the emitter, range of the electrons in the insulator which contains a space-charge electric field., Calculated thermal and fast unit sensitivities in a typical light-water-reactor neutron spectrum for four potential prompt-response SPN detectors, whose emitters consist of cobalt, cadmium, erbium, and hafnium, are compared with experimental data and are found to be in satisfactory agreement.