ANS is committed to advancing, fostering, and promoting the development and application of nuclear sciences and technologies to benefit society.
Explore the many uses for nuclear science and its impact on energy, the environment, healthcare, food, and more.
Explore membership for yourself or for your organization.
Conference Spotlight
2026 ANS Annual Conference
May 31–June 3, 2026
Denver, CO|Sheraton Denver
Latest Magazine Issues
Feb 2026
Jul 2025
Latest Journal Issues
Nuclear Science and Engineering
February 2026
Nuclear Technology
January 2026
Fusion Science and Technology
Latest News
DOE, General Matter team up for new fuel mission at Hanford
The Department of Energy's Office of Environmental Management (EM) on Tuesday announced a partnership with California-based nuclear fuel company General Matter for the potential use of the long-idle Fuels and Materials Examination Facility (FMEF) at the Hanford Site in Washington state.
According to the announcement, the DOE and General Matter have signed a lease to explore the FMEF's potential to be used for advanced nuclear fuel cycle technologies and materials, in part to help satisfy the predicted future requirements of artificial intelligence.
W. Jaschik, L W. Seifritz
Nuclear Science and Engineering | Volume 53 | Number 1 | January 1974 | Pages 61-78
Technical Paper | doi.org/10.13182/NSE74-A23330
Articles are hosted by Taylor and Francis Online.
A sophisticated model is presented for the calculation of prompt-response self-powered neutron (SPN) detectors used for stationary as well as nonstationary neutron flux measurements in nuclear reactor cores. The technique recommended for calculating the unit sensitivity in terms of A/(cm) per unit flux takes the following into account:, neutron self-shielding factor of the emitter, flux depression correction, Compton and photoelectron production rate due to self-absorption of the gamma-ray cascade emitted immediately after neutron capture, electron escape probability from the emitterm, loss of electron energy within the emitter, range of the electrons in the insulator which contains a space-charge electric field., Calculated thermal and fast unit sensitivities in a typical light-water-reactor neutron spectrum for four potential prompt-response SPN detectors, whose emitters consist of cobalt, cadmium, erbium, and hafnium, are compared with experimental data and are found to be in satisfactory agreement.