ANS is committed to advancing, fostering, and promoting the development and application of nuclear sciences and technologies to benefit society.
Explore the many uses for nuclear science and its impact on energy, the environment, healthcare, food, and more.
Explore membership for yourself or for your organization.
Conference Spotlight
2026 ANS Annual Conference
May 31–June 3, 2026
Denver, CO|Sheraton Denver
Standards Program
The Standards Committee is responsible for the development and maintenance of voluntary consensus standards that address the design, analysis, and operation of components, systems, and facilities related to the application of nuclear science and technology. Find out What’s New, check out the Standards Store, or Get Involved today!
Latest Magazine Issues
Dec 2025
Jul 2025
Latest Journal Issues
Nuclear Science and Engineering
January 2026
Nuclear Technology
December 2025
Fusion Science and Technology
November 2025
Latest News
AI at work: Southern Nuclear’s adoption of Copilot agents drives fleet forward
Southern Nuclear is leading the charge in artificial intelligence integration, with employee-developed applications driving efficiencies in maintenance, operations, safety, and performance.
The tools span all roles within the company, with thousands of documented uses throughout the fleet, including improved maintenance efficiency, risk awareness in maintenance activities, and better-informed decision-making. The data-intensive process of preparing for and executing maintenance operations is streamlined by leveraging AI to put the right information at the fingertips for maintenance leaders, planners, schedulers, engineers, and technicians.
Masatoshi Fujishiro
Nuclear Science and Engineering | Volume 52 | Number 4 | December 1973 | Pages 474-481
Technical Paper | doi.org/10.13182/NSE73-A23315
Articles are hosted by Taylor and Francis Online.
The intensities of the weak 2158- and 2505-keV gamma rays following the β‾ decay of 60Co were measured by applying the photonuclear reactions 9Be(γ,n) and 2D(γ,n). The results obtained were I(2158) = (2.0 ±1.3) ×10-5 I(2505) = (0.9 ± 0.7) × 10-7 photons per decay of 60Co. The present result for I(2158) agrees with other data found in the literature within stated errors, whereas that for I(2505) is significantly smaller than previous estimates. From the present value of I(2158), the rate B2 and logarithmic comparative half-life log f2t2 of the second-forbidden unique β‾ decay, which is intimately related to this intensity, was estimated as B2 ≤ (15.0 ± 9.8) × 10-3% and log f2t2 ≥ , respectively.