ANS is committed to advancing, fostering, and promoting the development and application of nuclear sciences and technologies to benefit society.
Explore the many uses for nuclear science and its impact on energy, the environment, healthcare, food, and more.
Explore membership for yourself or for your organization.
Conference Spotlight
2026 ANS Annual Conference
May 31–June 3, 2026
Denver, CO|Sheraton Denver
Latest Magazine Issues
Feb 2026
Jul 2025
Latest Journal Issues
Nuclear Science and Engineering
February 2026
Nuclear Technology
January 2026
Fusion Science and Technology
Latest News
DOE, General Matter team up for new fuel mission at Hanford
The Department of Energy's Office of Environmental Management (EM) on Tuesday announced a partnership with California-based nuclear fuel company General Matter for the potential use of the long-idle Fuels and Materials Examination Facility (FMEF) at the Hanford Site in Washington state.
According to the announcement, the DOE and General Matter have signed a lease to explore the FMEF's potential to be used for advanced nuclear fuel cycle technologies and materials, in part to help satisfy the predicted future requirements of artificial intelligence.
J. E. White, C. Y. Fu, K. J. Yost
Nuclear Science and Engineering | Volume 51 | Number 4 | August 1973 | Pages 496-508
Technical Note | doi.org/10.13182/NSE73-A23279
Articles are hosted by Taylor and Francis Online.
Gamma-ray yields as a function of neutron energy from thermal to 1 MeV for iron have been generated with a combined experimental and theoretical approach. The theoretical part is to a large extent statistical; however, parameters are introduced to compensate for the nonstatistical behavior. Experimental information used to evaluate these parameters are the branching ratios among discrete levels and the gamma-ray primary transitions from thermal and available resonance capture. A discussion of the implications of additional resonance capture yield data, which was made available after the completion of the calculation, is included. The results have been compared with integral experiments, and the agreement is favorable. Considerable variations in the capture gamma-ray yields as a function of incident neutron energy are noticed.