ANS is committed to advancing, fostering, and promoting the development and application of nuclear sciences and technologies to benefit society.
Explore the many uses for nuclear science and its impact on energy, the environment, healthcare, food, and more.
Division Spotlight
Decommissioning & Environmental Sciences
The mission of the Decommissioning and Environmental Sciences (DES) Division is to promote the development and use of those skills and technologies associated with the use of nuclear energy and the optimal management and stewardship of the environment, sustainable development, decommissioning, remediation, reutilization, and long-term surveillance and maintenance of nuclear-related installations, and sites. The target audience for this effort is the membership of the Division, the Society, and the public at large.
Meeting Spotlight
Nuclear Energy Conference & Expo (NECX)
September 8–11, 2025
Atlanta, GA|Atlanta Marriott Marquis
Standards Program
The Standards Committee is responsible for the development and maintenance of voluntary consensus standards that address the design, analysis, and operation of components, systems, and facilities related to the application of nuclear science and technology. Find out What’s New, check out the Standards Store, or Get Involved today!
Latest Magazine Issues
Jun 2025
Jan 2025
Latest Journal Issues
Nuclear Science and Engineering
August 2025
Nuclear Technology
July 2025
Fusion Science and Technology
Latest News
The when, where, why, and how of RIPB design
The American Nuclear Society’s Risk-informed, Performance-based Principles and Policy Committee (RP3C) held another presentation in its monthly Community of Practice (CoP) series.
Watch the full webinar here.
T. Courau, G. Marleau
Nuclear Science and Engineering | Volume 143 | Number 1 | January 2003 | Pages 19-32
Technical Paper | doi.org/10.13182/NSE02-11
Articles are hosted by Taylor and Francis Online.
Generalized perturbation theory (GPT) can be used as a means to evaluate sensitivity coefficients or to approximate variations in integrated lattice parameters resulting from small changes in local cell properties. Using a first-order perturbation approach, the changes in the integral parameters can be written as a sum of a direct term that takes directly into account the variations in the cell properties and an indirect term that approximates the neutron flux variations resulting from the perturbation. For a lattice cell code that relies on a collision probability technique to solve the transport equation, a problem related to the evaluation of the perturbed transport operator also arises because the collision probability matrix depends on the total cross section. A technique is presented to simulate these variations in the collision probability matrix using approximate source term variations. Comparison with exact calculations will show that the results obtained using GPT with these approximate source terms are reliable provided the perturbations remain small. Results for a parametric study of a two-dimensional pressurized water reactor 17 × 17 assembly and void reactivity calculations for a DUPIC-fueled CANDU cell are also presented.