ANS is committed to advancing, fostering, and promoting the development and application of nuclear sciences and technologies to benefit society.
Explore the many uses for nuclear science and its impact on energy, the environment, healthcare, food, and more.
Division Spotlight
Reactor Physics
The division's objectives are to promote the advancement of knowledge and understanding of the fundamental physical phenomena characterizing nuclear reactors and other nuclear systems. The division encourages research and disseminates information through meetings and publications. Areas of technical interest include nuclear data, particle interactions and transport, reactor and nuclear systems analysis, methods, design, validation and operating experience and standards. The Wigner Award heads the awards program.
Meeting Spotlight
International Conference on Mathematics and Computational Methods Applied to Nuclear Science and Engineering (M&C 2025)
April 27–30, 2025
Denver, CO|The Westin Denver Downtown
Standards Program
The Standards Committee is responsible for the development and maintenance of voluntary consensus standards that address the design, analysis, and operation of components, systems, and facilities related to the application of nuclear science and technology. Find out What’s New, check out the Standards Store, or Get Involved today!
Latest Magazine Issues
Apr 2025
Jan 2025
Latest Journal Issues
Nuclear Science and Engineering
June 2025
Nuclear Technology
Fusion Science and Technology
May 2025
Latest News
Argonne’s METL gears up to test more sodium fast reactor components
Argonne National Laboratory has successfully swapped out an aging cold trap in the sodium test loop called METL (Mechanisms Engineering Test Loop), the Department of Energy announced April 23. The upgrade is the first of its kind in the United States in more than 30 years, according to the DOE, and will help test components and operations for the sodium-cooled fast reactors being developed now.
M. M. R. Williams
Nuclear Science and Engineering | Volume 143 | Number 1 | January 2003 | Pages 1-18
Technical Paper | doi.org/10.13182/NSE03-A2314
Articles are hosted by Taylor and Francis Online.
A model of neutron multiplication for aggregates of randomly placed fissile spheres with random material properties in a background medium is presented in terms of the transport equation. Two distinct problems are examined: (1) small spheres in an infinite bulk medium in which the total cross section in the spheres and bulk medium are the same and (2) small spheres in a void or purely absorbing medium but with different total cross sections in sphere and medium. In both cases we consider criticality in which there are random material properties of the spheres and random positions in the container. The random sphere problem is studied statistically by calculating the multiplication factor for many thousands of cases with different positions and material properties and, from the results, constructing a probability distribution function for the multiplication factor. Some of the results are also calculated using diffusion theory and therefore we are able to give guidance on the likely errors caused by diffusion theory in this type of problem.Although the problems are restricted to the one speed approximation, they may be applicable to fast neutron problems and we apply the work to spheres composed of random proportions of 235U and 238U. The work also has some bearing on the physical behaviour of pebble bed reactors which are of current interest, and in the storage of fissile waste. We have also discussed some of the underlying statistical problems associated with random arrays of spheres in a uniform lattice. In formulating our problem, we use the collision probability technique and as a by-product derive some new inter-lump collision probabilities for two spheres.