ANS is committed to advancing, fostering, and promoting the development and application of nuclear sciences and technologies to benefit society.
Explore the many uses for nuclear science and its impact on energy, the environment, healthcare, food, and more.
Explore membership for yourself or for your organization.
Conference Spotlight
Nuclear Energy Conference & Expo (NECX)
September 8–11, 2025
Atlanta, GA|Atlanta Marriott Marquis
Standards Program
The Standards Committee is responsible for the development and maintenance of voluntary consensus standards that address the design, analysis, and operation of components, systems, and facilities related to the application of nuclear science and technology. Find out What’s New, check out the Standards Store, or Get Involved today!
Latest Magazine Issues
Aug 2025
Jan 2025
Latest Journal Issues
Nuclear Science and Engineering
September 2025
Nuclear Technology
Fusion Science and Technology
August 2025
Latest News
Powering the future: How the DOE is fueling nuclear fuel cycle research and development
As global interest in nuclear energy surges, the United States must remain at the forefront of research and development to ensure national energy security, advance nuclear technologies, and promote international cooperation on safety and nonproliferation. A crucial step in achieving this is analyzing how funding and resources are allocated to better understand how to direct future research and development. The Department of Energy has spearheaded this effort by funding hundreds of research projects across the country through the Nuclear Energy University Program (NEUP). This initiative has empowered dozens of universities to collaborate toward a nuclear-friendly future.
M. Sasaki, E. Kim, T. Nunomiya, T. Nakamura, N. Nakao, T. Shibata, Y. Uwamino, S. Ito, A. Fukumura
Nuclear Science and Engineering | Volume 141 | Number 2 | June 2002 | Pages 140-153
Technical Paper | doi.org/10.13182/NSE02-A2273
Articles are hosted by Taylor and Francis Online.
Neutron energy spectra penetrated through concrete shields were measured using three types of high-energy neutron detectors: the Self-TOF detector, an NE213 organic liquid scintillator, and Bi and C activation detectors, which have been newly developed by a group at the Heavy-Ion Medical Accelerator in Chiba (HIMAC) facility of the National Institute of Radiological Sciences, Japan. Neutrons were generated by bombarding 400 MeV/nucleon C ions on a thick (stopping-length) copper target. The neutron spectra were obtained through an unfolding code with their response functions and compared with LAHET and MCNPX calculations combined with the LA150 cross-section library. The calculations tend to overestimate with increasing the shielding thickness compared to the experimental results. The neutron fluence measured by the NE213 detector was simulated by the track length estimator in the MCNPX code, and the contribution of the room-scattered neutrons was evaluated. The neutron fluence attenuation length was obtained from the experiment for each detector and the calculation in the energy range of 20 to 800 MeV.