ANS is committed to advancing, fostering, and promoting the development and application of nuclear sciences and technologies to benefit society.
Explore the many uses for nuclear science and its impact on energy, the environment, healthcare, food, and more.
Explore membership for yourself or for your organization.
Conference Spotlight
2026 ANS Annual Conference
May 31–June 3, 2026
Denver, CO|Sheraton Denver
Latest Magazine Issues
Feb 2026
Jul 2025
Latest Journal Issues
Nuclear Science and Engineering
February 2026
Nuclear Technology
January 2026
Fusion Science and Technology
Latest News
Uranium prices reach highest level since February 2024
The end-of-January spot price for uranium was $94.28 per pound, according to uranium fuel provider Cameco. That was the highest spot price posted by the company since the $95.00 per pound it listed at the end of February 2024. Spot prices during 2025 ranged from a low of $64.23 per pound at the end of March to a high of $82.63 per pound at the end of September.
R. N. Blomquist, E. M. Gelbard
Nuclear Science and Engineering | Volume 141 | Number 2 | June 2002 | Pages 85-100
Technical Paper | doi.org/10.13182/NSE01-30
Articles are hosted by Taylor and Francis Online.
We compare nominal efficiencies, i.e., variances in power shapes for equal running time, of different versions of the Monte Carlo (MC) eigenvalue computation. The two main methods considered here are "conventional" MC and the superhistory method. Within each of these major methods, different variants are available for the main steps of the basic MC algorithm. Thus, for example, different treatments of the fission process may vary in the extent to which they follow, in analog fashion, the details of real-world fission, or they may vary in details of the methods by which they choose next-generation source sites. In general the same options are available in both the superhistory method and conventional MC, but there seems not to have been much examination of the special properties of the two major methods and their minor variants. We find, first, that the superhistory method is just as efficient as conventional MC and, second, that use of different variants of the basic algorithms may, in special cases, have a surprisingly large effect on MC computational efficiency.