ANS is committed to advancing, fostering, and promoting the development and application of nuclear sciences and technologies to benefit society.
Explore the many uses for nuclear science and its impact on energy, the environment, healthcare, food, and more.
Explore membership for yourself or for your organization.
Conference Spotlight
Nuclear Energy Conference & Expo (NECX)
September 8–11, 2025
Atlanta, GA|Atlanta Marriott Marquis
Standards Program
The Standards Committee is responsible for the development and maintenance of voluntary consensus standards that address the design, analysis, and operation of components, systems, and facilities related to the application of nuclear science and technology. Find out What’s New, check out the Standards Store, or Get Involved today!
Latest Magazine Issues
Aug 2025
Jan 2025
Latest Journal Issues
Nuclear Science and Engineering
September 2025
Nuclear Technology
Fusion Science and Technology
August 2025
Latest News
Powering the future: How the DOE is fueling nuclear fuel cycle research and development
As global interest in nuclear energy surges, the United States must remain at the forefront of research and development to ensure national energy security, advance nuclear technologies, and promote international cooperation on safety and nonproliferation. A crucial step in achieving this is analyzing how funding and resources are allocated to better understand how to direct future research and development. The Department of Energy has spearheaded this effort by funding hundreds of research projects across the country through the Nuclear Energy University Program (NEUP). This initiative has empowered dozens of universities to collaborate toward a nuclear-friendly future.
S. Benck, I. Slypen, J.-P. Meulders, V. Corcalciuc
Nuclear Science and Engineering | Volume 141 | Number 1 | May 2002 | Pages 55-65
Technical Paper | doi.org/10.13182/NSE02-A2266
Articles are hosted by Taylor and Francis Online.
Double-differential cross sections for the production of protons, deuterons, tritons, and alpha particles from a silicon target were determined using fast incident neutrons. The inclusive charged particle emission spectra were measured at six laboratory angles, 20, 40, 60, 70, 110, and 140 deg, over the neutron energy range of 25 to 65 MeV. Representative results are shown for the cross-section differentials in energy and angle as well as for angle-integrated cross sections. The spectra are compared to existing data and with predictions from nuclear model calculations. Since the data for 62.7-MeV incident neutrons are the most complete, we emphasized these results; from the experimental energy-differential cross sections, the total charged particle production cross sections are determined as well as the partial and total kerma coefficients for silicon. Moreover, a comparison is done with our data on aluminum, for which exists a consistent set of measured cross sections in the same neutron energy region.