ANS is committed to advancing, fostering, and promoting the development and application of nuclear sciences and technologies to benefit society.
Explore the many uses for nuclear science and its impact on energy, the environment, healthcare, food, and more.
Explore membership for yourself or for your organization.
Conference Spotlight
2026 Annual Conference
May 31–June 3, 2026
Denver, CO|Sheraton Denver
Standards Program
The Standards Committee is responsible for the development and maintenance of voluntary consensus standards that address the design, analysis, and operation of components, systems, and facilities related to the application of nuclear science and technology. Find out What’s New, check out the Standards Store, or Get Involved today!
Latest Magazine Issues
Dec 2025
Jul 2025
Latest Journal Issues
Nuclear Science and Engineering
December 2025
Nuclear Technology
Fusion Science and Technology
November 2025
Latest News
Deep Fission to break ground this week
With about seven months left in the race to bring DOE-authorized test reactors on line by July 4, 2026, via the Reactor Pilot Program, Deep Fission has announced that it will break ground on its associated project on December 9 in Parsons, Kansas. It’s one of many companies in the program that has made significant headway in recent months.
S. Benck, I. Slypen, J.-P. Meulders, V. Corcalciuc
Nuclear Science and Engineering | Volume 141 | Number 1 | May 2002 | Pages 55-65
Technical Paper | doi.org/10.13182/NSE02-A2266
Articles are hosted by Taylor and Francis Online.
Double-differential cross sections for the production of protons, deuterons, tritons, and alpha particles from a silicon target were determined using fast incident neutrons. The inclusive charged particle emission spectra were measured at six laboratory angles, 20, 40, 60, 70, 110, and 140 deg, over the neutron energy range of 25 to 65 MeV. Representative results are shown for the cross-section differentials in energy and angle as well as for angle-integrated cross sections. The spectra are compared to existing data and with predictions from nuclear model calculations. Since the data for 62.7-MeV incident neutrons are the most complete, we emphasized these results; from the experimental energy-differential cross sections, the total charged particle production cross sections are determined as well as the partial and total kerma coefficients for silicon. Moreover, a comparison is done with our data on aluminum, for which exists a consistent set of measured cross sections in the same neutron energy region.