ANS is committed to advancing, fostering, and promoting the development and application of nuclear sciences and technologies to benefit society.
Explore the many uses for nuclear science and its impact on energy, the environment, healthcare, food, and more.
Explore membership for yourself or for your organization.
Conference Spotlight
2026 ANS Annual Conference
May 31–June 3, 2026
Denver, CO|Sheraton Denver
Standards Program
The Standards Committee is responsible for the development and maintenance of voluntary consensus standards that address the design, analysis, and operation of components, systems, and facilities related to the application of nuclear science and technology. Find out What’s New, check out the Standards Store, or Get Involved today!
Latest Magazine Issues
Dec 2025
Jul 2025
Latest Journal Issues
Nuclear Science and Engineering
January 2026
Nuclear Technology
December 2025
Fusion Science and Technology
November 2025
Latest News
AI at work: Southern Nuclear’s adoption of Copilot agents drives fleet forward
Southern Nuclear is leading the charge in artificial intelligence integration, with employee-developed applications driving efficiencies in maintenance, operations, safety, and performance.
The tools span all roles within the company, with thousands of documented uses throughout the fleet, including improved maintenance efficiency, risk awareness in maintenance activities, and better-informed decision-making. The data-intensive process of preparing for and executing maintenance operations is streamlined by leveraging AI to put the right information at the fingertips for maintenance leaders, planners, schedulers, engineers, and technicians.
Randal S. Baker
Nuclear Science and Engineering | Volume 141 | Number 1 | May 2002 | Pages 1-12
Technical Paper | doi.org/10.13182/NSE02-A2262
Articles are hosted by Taylor and Francis Online.
We describe the development and implementation of a block-based adaptive mesh refinement (AMR) algorithm for solving the discrete ordinates neutral particle transport equation. AMR algorithms allow mesh refinement in areas of interest without requiring the extension of this refinement throughout the entire problem geometry, minimizing the number of computational cells required for calculations. The block-based AMR algorithm described here is a hybrid between traditional cell or patch-based approaches and is designed to allow an efficient parallel solution of the transport equation while still reducing the cell count.This paper discusses the data structure implementation and CPU/memory efficiency for our Block AMR method, the equations and procedures used in mapping edge fluxes between blocks of different refinement levels for both diamond and linear discontinuous spatial discretizations, effects of AMR on mesh convergence, and our approach to parallelization. Comparisons between our Block AMR method and a traditional single-level mesh are presented for a sample brachytherapy problem. The Block AMR results are shown to be significantly faster for this problem (on at least a few processors), while still returning an accurate solution.