ANS is committed to advancing, fostering, and promoting the development and application of nuclear sciences and technologies to benefit society.
Explore the many uses for nuclear science and its impact on energy, the environment, healthcare, food, and more.
Division Spotlight
Radiation Protection & Shielding
The Radiation Protection and Shielding Division is developing and promoting radiation protection and shielding aspects of nuclear science and technology — including interaction of nuclear radiation with materials and biological systems, instruments and techniques for the measurement of nuclear radiation fields, and radiation shield design and evaluation.
Meeting Spotlight
Nuclear Energy Conference & Expo (NECX)
September 8–11, 2025
Atlanta, GA|Atlanta Marriott Marquis
Standards Program
The Standards Committee is responsible for the development and maintenance of voluntary consensus standards that address the design, analysis, and operation of components, systems, and facilities related to the application of nuclear science and technology. Find out What’s New, check out the Standards Store, or Get Involved today!
Latest Magazine Issues
Jun 2025
Jan 2025
Latest Journal Issues
Nuclear Science and Engineering
August 2025
Nuclear Technology
July 2025
Fusion Science and Technology
Latest News
The when, where, why, and how of RIPB design
The American Nuclear Society’s Risk-informed, Performance-based Principles and Policy Committee (RP3C) held another presentation in its monthly Community of Practice (CoP) series.
Watch the full webinar here.
Randal S. Baker
Nuclear Science and Engineering | Volume 141 | Number 1 | May 2002 | Pages 1-12
Technical Paper | doi.org/10.13182/NSE02-A2262
Articles are hosted by Taylor and Francis Online.
We describe the development and implementation of a block-based adaptive mesh refinement (AMR) algorithm for solving the discrete ordinates neutral particle transport equation. AMR algorithms allow mesh refinement in areas of interest without requiring the extension of this refinement throughout the entire problem geometry, minimizing the number of computational cells required for calculations. The block-based AMR algorithm described here is a hybrid between traditional cell or patch-based approaches and is designed to allow an efficient parallel solution of the transport equation while still reducing the cell count.This paper discusses the data structure implementation and CPU/memory efficiency for our Block AMR method, the equations and procedures used in mapping edge fluxes between blocks of different refinement levels for both diamond and linear discontinuous spatial discretizations, effects of AMR on mesh convergence, and our approach to parallelization. Comparisons between our Block AMR method and a traditional single-level mesh are presented for a sample brachytherapy problem. The Block AMR results are shown to be significantly faster for this problem (on at least a few processors), while still returning an accurate solution.