ANS is committed to advancing, fostering, and promoting the development and application of nuclear sciences and technologies to benefit society.
Explore the many uses for nuclear science and its impact on energy, the environment, healthcare, food, and more.
Explore membership for yourself or for your organization.
Conference Spotlight
2025 ANS Winter Conference & Expo
November 9–12, 2025
Washington, DC|Washington Hilton
Standards Program
The Standards Committee is responsible for the development and maintenance of voluntary consensus standards that address the design, analysis, and operation of components, systems, and facilities related to the application of nuclear science and technology. Find out What’s New, check out the Standards Store, or Get Involved today!
Latest Magazine Issues
Oct 2025
Jul 2025
Latest Journal Issues
Nuclear Science and Engineering
November 2025
Nuclear Technology
Fusion Science and Technology
October 2025
Latest News
Industry Update—October 2025
Here is a recap of recent industry happenings:
New international partnership to speed Xe-100 SMR deployment
X-energy, Amazon, Korea Hydro & Nuclear Power, and Doosan Enerbility have formed a strategic partnership to accelerate the deployment of X-energy’s Xe-100 small modular reactors and TRISO fuel in the United States to meet the power demands from data centers and AI. The partners will collaborate in reactor engineering design, supply-chain development, construction planning, investment strategies, long-term operations, and global opportunities for joint AI-nuclear deployment. The companies also plan to jointly mobilize as much as $50 billion in public and private investment to support advanced nuclear energy in the U.S.
Michael Scott McKinley, Farzad Rahnema
Nuclear Science and Engineering | Volume 140 | Number 3 | March 2002 | Pages 285-294
Technical Paper | doi.org/10.13182/NSE02-A2261
Articles are hosted by Taylor and Francis Online.
First-order boundary condition perturbation theory is extended to the n'th order in transport theory for eigenvalue problems. In particular, using an unperturbed (known) solution, formalisms are developed to determine the solution to the neutron transport equation when the boundary condition of the system is perturbed. The new method requires the computation of an adjoint Green's function. The numerical solution of this function is discussed. Finally, four numerical examples are provided to verify the validity of the formalisms presented.