ANS is committed to advancing, fostering, and promoting the development and application of nuclear sciences and technologies to benefit society.
Explore the many uses for nuclear science and its impact on energy, the environment, healthcare, food, and more.
Division Spotlight
Robotics & Remote Systems
The Mission of the Robotics and Remote Systems Division is to promote the development and application of immersive simulation, robotics, and remote systems for hazardous environments for the purpose of reducing hazardous exposure to individuals, reducing environmental hazards and reducing the cost of performing work.
Meeting Spotlight
Nuclear Energy Conference & Expo (NECX)
September 8–11, 2025
Atlanta, GA|Atlanta Marriott Marquis
Standards Program
The Standards Committee is responsible for the development and maintenance of voluntary consensus standards that address the design, analysis, and operation of components, systems, and facilities related to the application of nuclear science and technology. Find out What’s New, check out the Standards Store, or Get Involved today!
Latest Magazine Issues
Jun 2025
Jan 2025
Latest Journal Issues
Nuclear Science and Engineering
August 2025
Nuclear Technology
July 2025
Fusion Science and Technology
Latest News
DOE extends Centrus’s HALEU production contract by one year
Centrus Energy has announced that it has secured a contract extension from the Department of Energy to continue—for one year—its ongoing high-assay low-enriched uranium (HALEU) production at the American Centrifuge Plant in Piketon, Ohio, at an annual rate of 900 kilograms of HALEU UF6. According to Centrus, the extension is valued at about $110 million through June 30, 2026.
Harold F. McFarlane
Nuclear Science and Engineering | Volume 49 | Number 4 | December 1972 | Pages 438-449
Technical Paper | doi.org/10.13182/NSE72-A22563
Articles are hosted by Taylor and Francis Online.
We have performed integral measurements of pulsed neutron distributions in graphite stacks ranging in buckling from 0.0051 to 0,018 cm−2 and have compared the results to a modeled theoretical computation. Based on these measurements, we have defined a critical buckling of 0.0085 cm−2 above which the decay of the neutron pulse is non-exponential. Non-exponential decay was observed in six graphite stacks which exceeded the critical buckling, while in three larger assemblies the decay was exponential over a significant part of the total measuring interval. From measurement of the time-dependent spatial distribution in four graphite assemblies, we were able to compute the effective decay constants of the two lowest order spatial modes as well as the time-dependent effective wave number of the distributions. We have interpreted the failure of the neutron distribution to establish either an exponential decay or an asymptotic spatial distribution in terms of recent theoretical work in this area.