ANS is committed to advancing, fostering, and promoting the development and application of nuclear sciences and technologies to benefit society.
Explore the many uses for nuclear science and its impact on energy, the environment, healthcare, food, and more.
Explore membership for yourself or for your organization.
Conference Spotlight
2026 Annual Conference
May 31–June 3, 2026
Denver, CO|Sheraton Denver
Standards Program
The Standards Committee is responsible for the development and maintenance of voluntary consensus standards that address the design, analysis, and operation of components, systems, and facilities related to the application of nuclear science and technology. Find out What’s New, check out the Standards Store, or Get Involved today!
Latest Magazine Issues
Dec 2025
Jul 2025
Latest Journal Issues
Nuclear Science and Engineering
December 2025
Nuclear Technology
Fusion Science and Technology
November 2025
Latest News
Perpetual Atomics, QSA Global produce Am fuel for nuclear space power
U.K.-based Perpetual Atomics and U.S.-based QSA Global claim to have achieved a major step forward in processing americium dioxide to fuel radioisotope power systems used in space missions. Using an industrially scalable process, the companies said they have turned americium into stable, large-scale ceramic pellets that can be directly integrated into sealed sources for radioisotope power systems, including radioisotope heater units (RHUs) and radioisotope thermoelectric generators (RTGs).
Harold F. McFarlane
Nuclear Science and Engineering | Volume 49 | Number 4 | December 1972 | Pages 438-449
Technical Paper | doi.org/10.13182/NSE72-A22563
Articles are hosted by Taylor and Francis Online.
We have performed integral measurements of pulsed neutron distributions in graphite stacks ranging in buckling from 0.0051 to 0,018 cm−2 and have compared the results to a modeled theoretical computation. Based on these measurements, we have defined a critical buckling of 0.0085 cm−2 above which the decay of the neutron pulse is non-exponential. Non-exponential decay was observed in six graphite stacks which exceeded the critical buckling, while in three larger assemblies the decay was exponential over a significant part of the total measuring interval. From measurement of the time-dependent spatial distribution in four graphite assemblies, we were able to compute the effective decay constants of the two lowest order spatial modes as well as the time-dependent effective wave number of the distributions. We have interpreted the failure of the neutron distribution to establish either an exponential decay or an asymptotic spatial distribution in terms of recent theoretical work in this area.