ANS is committed to advancing, fostering, and promoting the development and application of nuclear sciences and technologies to benefit society.
Explore the many uses for nuclear science and its impact on energy, the environment, healthcare, food, and more.
Explore membership for yourself or for your organization.
Conference Spotlight
2026 ANS Annual Conference
May 31–June 3, 2026
Denver, CO|Sheraton Denver
Latest Magazine Issues
Feb 2026
Jul 2025
Latest Journal Issues
Nuclear Science and Engineering
February 2026
Nuclear Technology
January 2026
Fusion Science and Technology
Latest News
DOE, General Matter team up for new fuel mission at Hanford
The Department of Energy's Office of Environmental Management (EM) on Tuesday announced a partnership with California-based nuclear fuel company General Matter for the potential use of the long-idle Fuels and Materials Examination Facility (FMEF) at the Hanford Site in Washington state.
According to the announcement, the DOE and General Matter have signed a lease to explore the FMEF's potential to be used for advanced nuclear fuel cycle technologies and materials, in part to help satisfy the predicted future requirements of artificial intelligence.
L. F. Rodriguez, A. Shapiro
Nuclear Science and Engineering | Volume 49 | Number 3 | November 1972 | Pages 349-357
Technical Paper | doi.org/10.13182/NSE72-A22547
Articles are hosted by Taylor and Francis Online.
Experimental methods which utilize incident bremsstrahlung radiation have been developed for rigorously evaluating gamma-ray shielding calculational methods and for determining gamma-ray shielding design parameters over a continuous energy span. Comparisons between experimentally determined double differential transmitted spectra, i.e., the spectra as a function of energy and angle, with corresponding calculated transmitted spectra, provides a rigorous test of the calculation. Additionally, by varying the maximum energy of the incident bremsstrahlung radiation, the kernel governing the angle and energy distribution of the transmitted photons can be unfolded from the spectra. A knowledge of this kernel allows calculations to be made of other parameters, such as build-up factors, transmitted doses, etc. Reasonably accurate kernels were obtained by subtracting out the contribution due to single collisions, and by smoothing the remaining multicollision component by applying Cook’s least structure analysis. To establish the methods, collimated beams of bremsstrahlung radiation were directed against an iron slab and the experimental results were compared to those obtained from the multigroup Monte Carlo code MORSE. Transmission measurements were taken at angles of 0, 30, and 60 deg from the incident direction. After modifying the estimator subroutine in MORSE, the spectral agreement obtained was excellent. The kernels obtained by inputting an incident constant group unit source in MORSE agreed favorably with those obtained experimentally from incident bremsstrahlung spectra.