ANS is committed to advancing, fostering, and promoting the development and application of nuclear sciences and technologies to benefit society.
Explore the many uses for nuclear science and its impact on energy, the environment, healthcare, food, and more.
Explore membership for yourself or for your organization.
Conference Spotlight
2026 ANS Annual Conference
May 31–June 3, 2026
Denver, CO|Sheraton Denver
Latest Magazine Issues
Feb 2026
Jul 2025
Latest Journal Issues
Nuclear Science and Engineering
February 2026
Nuclear Technology
January 2026
Fusion Science and Technology
Latest News
DOE, General Matter team up for new fuel mission at Hanford
The Department of Energy's Office of Environmental Management (EM) on Tuesday announced a partnership with California-based nuclear fuel company General Matter for the potential use of the long-idle Fuels and Materials Examination Facility (FMEF) at the Hanford Site in Washington state.
According to the announcement, the DOE and General Matter have signed a lease to explore the FMEF's potential to be used for advanced nuclear fuel cycle technologies and materials, in part to help satisfy the predicted future requirements of artificial intelligence.
Keiichi Saito
Nuclear Science and Engineering | Volume 48 | Number 4 | August 1972 | Pages 467-474
Technical Paper | doi.org/10.13182/NSE72-A22514
Articles are hosted by Taylor and Francis Online.
Lehto and Carpenter performed a set of experiments concerning the temperature and the gamma-ray fluctuations in a relatively low power reactor with high fission product inventories. The results are uniformly and quantitatively analyzed by applying the theoretical approach previously developed by the present author. The new features of the present consideration are the following two points: (a) incorporation of the external noise source in the previous theory which includes only the inherent noise source theoretically determined with the use of the first-order linearized Markoffian model of the reactor noise phenomenon; (b) analysis of the cross power spectral density (CPSD) between the two state quantities characterizing the core performances. The first point gives a successful interpretation of most of the experimental results in spite of adopting a simple analytical model. The newly extended framework of the theory can include also a reactivity transfer-function analysis with the use of a proper driving function. The phase of the CPSD between the power and the temperature is calculated on a one-space-point, a one-delayed-group, and a one- or two-feedback-loop reactor model. The results suggest that the experimental determination of the phase will provide both a check point for the theoretical model of the dynamical behaviors of at-power reactors and some bits of information on the feedback parameters.