ANS is committed to advancing, fostering, and promoting the development and application of nuclear sciences and technologies to benefit society.
Explore the many uses for nuclear science and its impact on energy, the environment, healthcare, food, and more.
Explore membership for yourself or for your organization.
Conference Spotlight
2026 ANS Annual Conference
May 31–June 3, 2026
Denver, CO|Sheraton Denver
Latest Magazine Issues
Feb 2026
Jul 2025
Latest Journal Issues
Nuclear Science and Engineering
February 2026
Nuclear Technology
January 2026
Fusion Science and Technology
Latest News
DOE, General Matter team up for new fuel mission at Hanford
The Department of Energy's Office of Environmental Management (EM) on Tuesday announced a partnership with California-based nuclear fuel company General Matter for the potential use of the long-idle Fuels and Materials Examination Facility (FMEF) at the Hanford Site in Washington state.
According to the announcement, the DOE and General Matter have signed a lease to explore the FMEF's potential to be used for advanced nuclear fuel cycle technologies and materials, in part to help satisfy the predicted future requirements of artificial intelligence.
Weston M. Stacey, Jr.
Nuclear Science and Engineering | Volume 48 | Number 4 | August 1972 | Pages 444-458
Technical Paper | doi.org/10.13182/NSE72-A22512
Articles are hosted by Taylor and Francis Online.
A variational theory is developed for estimating reactivity worths (and other bilinear ratios) and reaction rate ratios in critical nuclear reactors. These estimates embody corrections to first-order perturbation theory which account for the flux change caused by the reactivity perturbation and for the changes in the flux and adjoint when the system is altered. The physical significance of certain generalized functions which arise in the development of the theory is investigated. The relation of the variational theory to generalized perturbation theory is examined, and the additional restrictions required to reduce the former to the latter are established. Finally, the variational theory is demonstrated to yield accurate estimates for reactivity worths and reaction rate ratios in a fast reactor model, subject to a wide range of alterations in nuclear properties and compositions.