ANS is committed to advancing, fostering, and promoting the development and application of nuclear sciences and technologies to benefit society.
Explore the many uses for nuclear science and its impact on energy, the environment, healthcare, food, and more.
Explore membership for yourself or for your organization.
Conference Spotlight
2026 ANS Annual Conference
May 31–June 3, 2026
Denver, CO|Sheraton Denver
Latest Magazine Issues
Feb 2026
Jul 2025
Latest Journal Issues
Nuclear Science and Engineering
February 2026
Nuclear Technology
January 2026
Fusion Science and Technology
Latest News
DOE, General Matter team up for new fuel mission at Hanford
The Department of Energy's Office of Environmental Management (EM) on Tuesday announced a partnership with California-based nuclear fuel company General Matter for the potential use of the long-idle Fuels and Materials Examination Facility (FMEF) at the Hanford Site in Washington state.
According to the announcement, the DOE and General Matter have signed a lease to explore the FMEF's potential to be used for advanced nuclear fuel cycle technologies and materials, in part to help satisfy the predicted future requirements of artificial intelligence.
S. J. Raffety, J. T. Mihalczo
Nuclear Science and Engineering | Volume 48 | Number 4 | August 1972 | Pages 433-443
Technical Paper | doi.org/10.13182/NSE72-A22511
Articles are hosted by Taylor and Francis Online.
A series of clean critical experiments has been performed with homogeneous mixtures of finely divided U(2)F4 or U(3)F4 dispersed in dispersed in paraffin with H/235U atomic ratios varying from 133 to 972. The assemblies were constructed in rectangular geometry, and minimum critical masses and volumes in cylindrical and spherical geometries were obtained from buckling conversions. The minimum critical spherical volumes of a U(2)F4-paraffin mixture when unreflected and when reflected with an effectively infinite solid hydrogenous material are 199 and 138 liters, respectively, and the minimum critical 235U masses are 7.5 and 5.4 kg, respectively. The experiments with the U(3)F4-paraffin mixtures were not extensive enough to determine experimentally the values at optimum moderation but transport theory calculations indicate that the unreflected and reflected minimum critical volumes are about 93 and 57 liters, respectively, and that the minimum critical masses are about 4.1 and 2.7 kg of 235U, respectively. Measurements of the 238U-to-235U fission ratio indicated that in some assemblies as much as 6.5% of the fissions occurred in 238U. Prompt-neutron decay constants, α = βeff/1 were measured in reflected and unreflected delayed-critical assemblies of several fuel mixtures by the pulsed-neutron technique; the infinite-medium neutron multiplication factor, k∞, for the various fuel mixtures was inferred from height perturbation measurements.Transport theory calculations of k∞ and feff have been made using various cross-section sets.