ANS is committed to advancing, fostering, and promoting the development and application of nuclear sciences and technologies to benefit society.
Explore the many uses for nuclear science and its impact on energy, the environment, healthcare, food, and more.
Explore membership for yourself or for your organization.
Conference Spotlight
Nuclear Energy Conference & Expo (NECX)
September 8–11, 2025
Atlanta, GA|Atlanta Marriott Marquis
Standards Program
The Standards Committee is responsible for the development and maintenance of voluntary consensus standards that address the design, analysis, and operation of components, systems, and facilities related to the application of nuclear science and technology. Find out What’s New, check out the Standards Store, or Get Involved today!
Latest Magazine Issues
Aug 2025
Jan 2025
Latest Journal Issues
Nuclear Science and Engineering
September 2025
Nuclear Technology
August 2025
Fusion Science and Technology
Latest News
Chris Wagner: The role of Eden Radioisotopes in the future of nuclear medicine
Chris Wagner has more than 40 years of experience in nuclear medicine, beginning as a clinical practitioner before moving into leadership roles at companies like Mallinckrodt (now Curium) and Nordion. His knowledge of both the clinical and the manufacturing sides of nuclear medicine laid the groundwork for helping to found Eden Radioisotopes, a start-up venture that intends to make diagnostic and therapeutic raw material medical isotopes like molybdenum-99 and lutetium-177.
Hyun Chul Lee, Chang Hyo Kim
Nuclear Science and Engineering | Volume 140 | Number 2 | February 2002 | Pages 137-151
Technical Paper | doi.org/10.13182/NSE02-A2250
Articles are hosted by Taylor and Francis Online.
The analytic function expansion nodal (AFEN) method formulation for the solution to two-group diffusion equations in rectangular geometry is reformulated in the principle of the unified nodal method (UNM) formulation. Except for the corner point neutron balance equations, the nodal coupling relations of the reformulated AFEN method are shown to resemble exactly those of the nodal expansion method (NEM) so that they not only can be easily incorporated into the existing NEM production codes but also can enable one to make the most of the well-established numerical solution schemes including the nonlinear coarse-mesh finite difference (CMFD) schemes for speedy AFEN method calculations. A one-node CMFD scheme for the speedy AFEN calculations of the UNM formulation is newly proposed. The effectiveness of the one-node scheme is compared with that of the two-node CMFD scheme in terms of UNM solutions to the International Atomic Energy Agency and Organization for Economic Cooperation and Development L336 neutronics benchmark problems. Advantages of the UNM formulation for the AFEN method calculations over the original AFEN method formulation are discussed.