ANS is committed to advancing, fostering, and promoting the development and application of nuclear sciences and technologies to benefit society.
Explore the many uses for nuclear science and its impact on energy, the environment, healthcare, food, and more.
Explore membership for yourself or for your organization.
Conference Spotlight
2025 ANS Winter Conference & Expo
November 9–12, 2025
Washington, DC|Washington Hilton
Standards Program
The Standards Committee is responsible for the development and maintenance of voluntary consensus standards that address the design, analysis, and operation of components, systems, and facilities related to the application of nuclear science and technology. Find out What’s New, check out the Standards Store, or Get Involved today!
Latest Magazine Issues
Oct 2025
Jul 2025
Latest Journal Issues
Nuclear Science and Engineering
November 2025
Nuclear Technology
Fusion Science and Technology
Latest News
Leading the charge: INL’s role in advancing HALEU production
Idaho National Laboratory is playing a key role in helping the U.S. Department of Energy meet near-term needs by recovering HALEU from federal inventories, providing critical support to help lay the foundation for a future commercial HALEU supply chain. INL also supports coordination of broader DOE efforts, from material recovery at the Savannah River Site in South Carolina to commercial enrichment initiatives.
K. Gul
Nuclear Science and Engineering | Volume 140 | Number 1 | January 2002 | Pages 103-110
Technical Paper | doi.org/10.13182/NSE02-A2248
Articles are hosted by Taylor and Francis Online.
Calculations for the excitation functions of the 58Ni(n, )55Fe reaction, including those of the ground and first states of 55Fe, 58Ni(n, p+p)54Mn, 58Ni(n,2n)57Ni, 58Ni(n,n')58Ni, and 58Ni(n,np+pn)57Co reactions were carried out using nuclear reaction model codes. The results have been compared with reported measurements and evaluations. The available data on the 58Ni(n,n')58Ni, 58Ni(n,2n)57Ni, and 58Ni(n,np+pn+d)57Co reactions are described well by using the single-particle model for the calculation of gamma-ray transition probabilities of the excited states of 58Ni.