ANS is committed to advancing, fostering, and promoting the development and application of nuclear sciences and technologies to benefit society.
Explore the many uses for nuclear science and its impact on energy, the environment, healthcare, food, and more.
Explore membership for yourself or for your organization.
Conference Spotlight
2026 ANS Annual Conference
May 31–June 3, 2026
Denver, CO|Sheraton Denver
Standards Program
The Standards Committee is responsible for the development and maintenance of voluntary consensus standards that address the design, analysis, and operation of components, systems, and facilities related to the application of nuclear science and technology. Find out What’s New, check out the Standards Store, or Get Involved today!
Latest Magazine Issues
Dec 2025
Jul 2025
Latest Journal Issues
Nuclear Science and Engineering
January 2026
Nuclear Technology
December 2025
Fusion Science and Technology
November 2025
Latest News
AI at work: Southern Nuclear’s adoption of Copilot agents drives fleet forward
Southern Nuclear is leading the charge in artificial intelligence integration, with employee-developed applications driving efficiencies in maintenance, operations, safety, and performance.
The tools span all roles within the company, with thousands of documented uses throughout the fleet, including improved maintenance efficiency, risk awareness in maintenance activities, and better-informed decision-making. The data-intensive process of preparing for and executing maintenance operations is streamlined by leveraging AI to put the right information at the fingertips for maintenance leaders, planners, schedulers, engineers, and technicians.
M. L. Mallikarjuna, S. B. Appaji Gowda, S. Krishnaveni, R. Gowda, T. K. Umesh
Nuclear Science and Engineering | Volume 140 | Number 1 | January 2002 | Pages 96-102
Technical Paper | doi.org/10.13182/NSE02-A2247
Articles are hosted by Taylor and Francis Online.
The total attenuation cross sections of the elements copper, zirconium, silver, and tin have been measured experimentally in a narrow beam good geometry set up by employing a high-resolution hyperpure germanium detector in the energy range 5 to 85 keV. The data have been used to derive the K-shell photoeffect cross sections at the K-edge, the oscillator strength gK, and the K-jump ratio of the elements copper, zirconium, silver, and tin. The photoeffect cross sections at the K-edge and the oscillator strengths of the element have been calculated by making use of a method that eliminates the requirement of subtracting the theoretical scattering contribution. The best-fit coefficients for the cross sections and the relations so obtained for the jump ratios and oscillator strengths facilitate a speedier E- and Z-wise interpolation of the data on total attenuation cross sections as well as JK and K-shell photo effect cross sections at the K-edge, respectively, in the range 5 to 85 keV, for elements in the atomic number range 25 to 55.