ANS is committed to advancing, fostering, and promoting the development and application of nuclear sciences and technologies to benefit society.
Explore the many uses for nuclear science and its impact on energy, the environment, healthcare, food, and more.
Division Spotlight
Accelerator Applications
The division was organized to promote the advancement of knowledge of the use of particle accelerator technologies for nuclear and other applications. It focuses on production of neutrons and other particles, utilization of these particles for scientific or industrial purposes, such as the production or destruction of radionuclides significant to energy, medicine, defense or other endeavors, as well as imaging and diagnostics.
Meeting Spotlight
Nuclear Energy Conference & Expo (NECX)
September 8–11, 2025
Atlanta, GA|Atlanta Marriott Marquis
Standards Program
The Standards Committee is responsible for the development and maintenance of voluntary consensus standards that address the design, analysis, and operation of components, systems, and facilities related to the application of nuclear science and technology. Find out What’s New, check out the Standards Store, or Get Involved today!
Latest Magazine Issues
Jun 2025
Jan 2025
Latest Journal Issues
Nuclear Science and Engineering
August 2025
Nuclear Technology
July 2025
Fusion Science and Technology
Latest News
A look inside NIST’s work to optimize cancer treatment and radiation dosimetry
In an article just published by the Taking Measure blog of the National Institute of Standards and Technology, Stephen Russek—who leads the Imaging Physics Project in the Magnetic Imaging Group at NIST and codirects the MRI Biomarker Measurement Service—describes his team’s work using phantom stand-ins for human tissue.
S. Fan, Y. Ye, Z. Zhao, H. Yu, Z. Luo
Nuclear Science and Engineering | Volume 139 | Number 3 | November 2001 | Pages 318-326
Technical Note | doi.org/10.13182/NSE01-A2241
Articles are hosted by Taylor and Francis Online.
A study of the properties of the neutron production target for the China accelerator-driven system induced from 150-MeV incident proton energy and a 3-mA beam current is performed. The selection of the material and geometry design for the target; the physics properties of the target involved in this work including the neutron yield, energy, and space distribution for the neutrons leaked from the target; and the spallation fragment of charge and mass distribution have been investigated using the SHIELD code. An analysis of the target radiation damage and energy deposit is also carried out.