ANS is committed to advancing, fostering, and promoting the development and application of nuclear sciences and technologies to benefit society.
Explore the many uses for nuclear science and its impact on energy, the environment, healthcare, food, and more.
Division Spotlight
Education, Training & Workforce Development
The Education, Training & Workforce Development Division provides communication among the academic, industrial, and governmental communities through the exchange of views and information on matters related to education, training and workforce development in nuclear and radiological science, engineering, and technology. Industry leaders, education and training professionals, and interested students work together through Society-sponsored meetings and publications, to enrich their professional development, to educate the general public, and to advance nuclear and radiological science and engineering.
Meeting Spotlight
2025 ANS Annual Conference
June 15–18, 2025
Chicago, IL|Chicago Marriott Downtown
Standards Program
The Standards Committee is responsible for the development and maintenance of voluntary consensus standards that address the design, analysis, and operation of components, systems, and facilities related to the application of nuclear science and technology. Find out What’s New, check out the Standards Store, or Get Involved today!
Latest Magazine Issues
Jun 2025
Jan 2025
Latest Journal Issues
Nuclear Science and Engineering
July 2025
Nuclear Technology
June 2025
Fusion Science and Technology
Latest News
ANS announces 2025 Presidential Citations
One of the privileges of being president of the American Nuclear Society is awarding Presidential Citations to individuals who have demonstrated outstanding effort in some manner for the benefit of ANS or the nuclear community at large. Citations are conferred twice each year, at the Annual and Winter Meetings.
ANS President Lisa Marshall has named this season’s recipients, who will receive recognition at the upcoming Annual Conference in Chicago during the Special Session on Tuesday, June 17.
Yigal Ronen
Nuclear Science and Engineering | Volume 47 | Number 2 | February 1972 | Pages 195-202
Technical Paper | doi.org/10.13182/NSE72-A22396
Articles are hosted by Taylor and Francis Online.
An analytic method for error estimate is applied to reactor theory. The method is based on the functional analysis technique and gives upper bounds to the errors. There are two main advantages to the method. First, error estimates can be obtained in cases for which no other known method succeeds. Second, any upper bound to the error obtained by this method is reliable. This method finds an upper bound to the errors in the eigenvalues of homogeneous equations and in the relative RMS solutions of the inhomogeneous equations. When the method is applied to the inhomogeneous integral transport equations, upper bounds to the relative RMS of the fluxes result. Application of the method is further extended to homogeneous equations such as the integral transport equations and even to unbounded equations such as diffusion equations. For these cases the errors in reactivity and time decay constants are studied.