ANS is committed to advancing, fostering, and promoting the development and application of nuclear sciences and technologies to benefit society.
Explore the many uses for nuclear science and its impact on energy, the environment, healthcare, food, and more.
Explore membership for yourself or for your organization.
Conference Spotlight
Nuclear Energy Conference & Expo (NECX)
September 8–11, 2025
Atlanta, GA|Atlanta Marriott Marquis
Standards Program
The Standards Committee is responsible for the development and maintenance of voluntary consensus standards that address the design, analysis, and operation of components, systems, and facilities related to the application of nuclear science and technology. Find out What’s New, check out the Standards Store, or Get Involved today!
Latest Magazine Issues
Jul 2025
Jan 2025
Latest Journal Issues
Nuclear Science and Engineering
August 2025
Nuclear Technology
Fusion Science and Technology
July 2025
Latest News
Hash Hashemian: Visionary leadership
As Dr. Hashem M. “Hash” Hashemian prepares to step into his term as President of the American Nuclear Society, he is clear that he wants to make the most of this unique moment.
A groundswell in public approval of nuclear is finding a home in growing governmental support that is backed by a tailwind of technological innovation. “Now is a good time to be in nuclear,” Hashemian said, as he explained the criticality of this moment and what he hoped to accomplish as president.
Dong H. Nguyen, Marshall T. Slayton, John A. Frew
Nuclear Science and Engineering | Volume 46 | Number 3 | December 1971 | Pages 416-421
Technical Note | doi.org/10.13182/NSE71-A22379
Articles are hosted by Taylor and Francis Online.
Transport parameters (migration area, age to indium resonance) of fast neutrons from a plutonium -beryllium source have been measured in aqueous absorbing solutions at several temperatures (35, 40, 55, and 75°C), using boric acid as the 1/ absorber. For the measurements at 35 and 40°C, the saturation concentrations of boric acid were attained at 70 and 80 g/liter, respectively. For a 1/ absorber, a temperature-dependent power series representation of k2 in terms of absorption cross section ∑ao was proposed, based on the concept of neutron temperature. The temperature range wherein such an expansion remains valid was experimentally determined. It was found that strong concentrations of a 1/ absorber caused much difficulty in experimentally resolving the thermal neutron spatial distributions, an observation which might have a direct relation to the (∑t)min limit of Corngold.