ANS is committed to advancing, fostering, and promoting the development and application of nuclear sciences and technologies to benefit society.
Explore the many uses for nuclear science and its impact on energy, the environment, healthcare, food, and more.
Division Spotlight
Robotics & Remote Systems
The Mission of the Robotics and Remote Systems Division is to promote the development and application of immersive simulation, robotics, and remote systems for hazardous environments for the purpose of reducing hazardous exposure to individuals, reducing environmental hazards and reducing the cost of performing work.
Meeting Spotlight
International Conference on Mathematics and Computational Methods Applied to Nuclear Science and Engineering (M&C 2025)
April 27–30, 2025
Denver, CO|The Westin Denver Downtown
Standards Program
The Standards Committee is responsible for the development and maintenance of voluntary consensus standards that address the design, analysis, and operation of components, systems, and facilities related to the application of nuclear science and technology. Find out What’s New, check out the Standards Store, or Get Involved today!
Latest Magazine Issues
Apr 2025
Jan 2025
Latest Journal Issues
Nuclear Science and Engineering
June 2025
Nuclear Technology
Fusion Science and Technology
May 2025
Latest News
Ariz. governor vetoes “fast track” bill for nuclear
Gov. Katie Hobbs put the brakes on legislation that would have eliminated some of Arizona’s regulations and oversight of small modular reactors, technology that is largely under consideration by data centers and heavy industrial power users.
E. Linn Draper, Jr.
Nuclear Science and Engineering | Volume 46 | Number 1 | October 1971 | Pages 31-41
Technical Paper | doi.org/10.13182/NSE71-A22333
Articles are hosted by Taylor and Francis Online.
Integral fission rates were measured for 232Th, 233U, 235U, 236U, 238U, 237Np, 239Pu, 248Pu, 241Pu, 241Am, 232mAm, and 243Am in four tailored epicadmium neutron spectra. The fission rates were determined by counting fission fragment tracks in solid-state track recorders. The measured and calculated fission rates differed by <7% for 232Th, 233U, 238U, 236U, and 237Np in each spectrum. There is evidence that the 232Th, 238U, and 237Np differential data need slight normalization corrections. Plutonium-239, 240Pu, 241 Pu, 241 Am, 242mAm, and 243Am each exhibited larger deviations of measured from calculated activities than the lighter nuclides. The magnitude of the deviations varied from one spectrum to another for some materials, indicating the possibility of not only magnitude but also shape uncertain-ties for the differential cross sections.