ANS is committed to advancing, fostering, and promoting the development and application of nuclear sciences and technologies to benefit society.
Explore the many uses for nuclear science and its impact on energy, the environment, healthcare, food, and more.
Explore membership for yourself or for your organization.
Conference Spotlight
Nuclear Energy Conference & Expo (NECX)
September 8–11, 2025
Atlanta, GA|Atlanta Marriott Marquis
Standards Program
The Standards Committee is responsible for the development and maintenance of voluntary consensus standards that address the design, analysis, and operation of components, systems, and facilities related to the application of nuclear science and technology. Find out What’s New, check out the Standards Store, or Get Involved today!
Latest Magazine Issues
Aug 2025
Jan 2025
Latest Journal Issues
Nuclear Science and Engineering
September 2025
Nuclear Technology
August 2025
Fusion Science and Technology
Latest News
No impact from Savannah River radioactive wasps
The news is abuzz with recent news stories about four radioactive wasp nests found at the Department of Energy’s Savannah River Site in South Carolina. The site has been undergoing cleanup operations since the 1990s related to the production of plutonium and tritium for defense purposes during the Cold War. Cleanup activities are expected to continue into the 2060s.
P. Dickstein, D. Ingman, N. H. Shafrir
Nuclear Science and Engineering | Volume 98 | Number 3 | March 1988 | Pages 255-265
Technical Paper | doi.org/10.13182/NSE88-A22326
Articles are hosted by Taylor and Francis Online.
Theoretical models for electronic stopping in the medium velocity region ∼ are based on a statistical treatment of the atoms. Thus, effects due to the electronic shell structure of the target atom cannot be reproduced. Stopping measurements of fission fragments reveal a pronounced nonmonotonic dependence on Z2. An attempt was made to determine the systematics of the Z2 oscillations in the stopping of fission fragments. After performing a sensitivity analysis of a large number of experimental results, a semiempirical modified Lindhard-Scharff-Schiøtt (LSS) expression for the calculation of fission-fragment ranges in any target material was developed, which includes the Z2 oscillations. This expression has been evaluated and compared to the original LSS theory by means of the Theory of Information.