ANS is committed to advancing, fostering, and promoting the development and application of nuclear sciences and technologies to benefit society.
Explore the many uses for nuclear science and its impact on energy, the environment, healthcare, food, and more.
Explore membership for yourself or for your organization.
Conference Spotlight
2026 Annual Conference
May 31–June 3, 2026
Denver, CO|Sheraton Denver
Standards Program
The Standards Committee is responsible for the development and maintenance of voluntary consensus standards that address the design, analysis, and operation of components, systems, and facilities related to the application of nuclear science and technology. Find out What’s New, check out the Standards Store, or Get Involved today!
Latest Magazine Issues
Dec 2025
Jul 2025
Latest Journal Issues
Nuclear Science and Engineering
December 2025
Nuclear Technology
Fusion Science and Technology
November 2025
Latest News
Deep Fission to break ground this week
With about seven months left in the race to bring DOE-authorized test reactors on line by July 4, 2026, via the Reactor Pilot Program, Deep Fission has announced that it will break ground on its associated project on December 9 in Parsons, Kansas. It’s one of many companies in the program that has made significant headway in recent months.
M. M. R. Williams, Edward W. Larsen
Nuclear Science and Engineering | Volume 139 | Number 1 | September 2001 | Pages 66-77
Technical Paper | doi.org/10.13182/NSE01-A2222
Articles are hosted by Taylor and Francis Online.
The majority of earlier work on neutron transport in spatially random media has relied on special models of the random process, closure techniques or perturbation theory. The purpose of the present paper is to further develop a technique, which employs the source-sink method and simulation, and which in principle leads to exact probability distributions, to assess the accuracy of such approximate methods. To this end, we also use perturbation theory, and extend it to eigenvalue problems thereby enabling random fluctuations in reactivity to be studied and some measures of their statistical properties to be calculated. We have found, by comparing results for the variance in the reactivity fluctuations with essentially exact values, that the perturbation method is an accurate way to deal with stochastic equations and is far more efficient numerically than the more exact simulation method.