ANS is committed to advancing, fostering, and promoting the development and application of nuclear sciences and technologies to benefit society.
Explore the many uses for nuclear science and its impact on energy, the environment, healthcare, food, and more.
Explore membership for yourself or for your organization.
Conference Spotlight
2025 ANS Winter Conference & Expo
November 9–12, 2025
Washington, DC|Washington Hilton
Standards Program
The Standards Committee is responsible for the development and maintenance of voluntary consensus standards that address the design, analysis, and operation of components, systems, and facilities related to the application of nuclear science and technology. Find out What’s New, check out the Standards Store, or Get Involved today!
Latest Magazine Issues
Oct 2025
Jul 2025
Latest Journal Issues
Nuclear Science and Engineering
November 2025
Nuclear Technology
Fusion Science and Technology
Latest News
Leading the charge: INL’s role in advancing HALEU production
Idaho National Laboratory is playing a key role in helping the U.S. Department of Energy meet near-term needs by recovering HALEU from federal inventories, providing critical support to help lay the foundation for a future commercial HALEU supply chain. INL also supports coordination of broader DOE efforts, from material recovery at the Savannah River Site in South Carolina to commercial enrichment initiatives.
M. M. R. Williams, Edward W. Larsen
Nuclear Science and Engineering | Volume 139 | Number 1 | September 2001 | Pages 66-77
Technical Paper | doi.org/10.13182/NSE01-A2222
Articles are hosted by Taylor and Francis Online.
The majority of earlier work on neutron transport in spatially random media has relied on special models of the random process, closure techniques or perturbation theory. The purpose of the present paper is to further develop a technique, which employs the source-sink method and simulation, and which in principle leads to exact probability distributions, to assess the accuracy of such approximate methods. To this end, we also use perturbation theory, and extend it to eigenvalue problems thereby enabling random fluctuations in reactivity to be studied and some measures of their statistical properties to be calculated. We have found, by comparing results for the variance in the reactivity fluctuations with essentially exact values, that the perturbation method is an accurate way to deal with stochastic equations and is far more efficient numerically than the more exact simulation method.