ANS is committed to advancing, fostering, and promoting the development and application of nuclear sciences and technologies to benefit society.
Explore the many uses for nuclear science and its impact on energy, the environment, healthcare, food, and more.
Division Spotlight
Accelerator Applications
The division was organized to promote the advancement of knowledge of the use of particle accelerator technologies for nuclear and other applications. It focuses on production of neutrons and other particles, utilization of these particles for scientific or industrial purposes, such as the production or destruction of radionuclides significant to energy, medicine, defense or other endeavors, as well as imaging and diagnostics.
Meeting Spotlight
International Conference on Mathematics and Computational Methods Applied to Nuclear Science and Engineering (M&C 2025)
April 27–30, 2025
Denver, CO|The Westin Denver Downtown
Standards Program
The Standards Committee is responsible for the development and maintenance of voluntary consensus standards that address the design, analysis, and operation of components, systems, and facilities related to the application of nuclear science and technology. Find out What’s New, check out the Standards Store, or Get Involved today!
Latest Magazine Issues
Apr 2025
Jan 2025
Latest Journal Issues
Nuclear Science and Engineering
June 2025
Nuclear Technology
Fusion Science and Technology
May 2025
Latest News
Argonne’s METL gears up to test more sodium fast reactor components
Argonne National Laboratory has successfully swapped out an aging cold trap in the sodium test loop called METL (Mechanisms Engineering Test Loop), the Department of Energy announced April 23. The upgrade is the first of its kind in the United States in more than 30 years, according to the DOE, and will help test components and operations for the sodium-cooled fast reactors being developed now.
Y. Ronen, M. Aboudy, D. Regev
Nuclear Science and Engineering | Volume 138 | Number 3 | July 2001 | Pages 295-304
Technical Paper | doi.org/10.13182/NSE01-A2215
Articles are hosted by Taylor and Francis Online.
The best sources of neutrons for neutron capture therapy (NCT) are nuclear reactors. To consider installing nuclear reactors in hospitals, such reactors must be cheap and inherently safe. To meet these requirements, the power of the reactor should be low. To obtain low reactor power and high flux, the critical mass should be small.A preliminary design for a 10-kW homogeneous reactor with a critical mass of 19.22 g 242mAm is presented. The obtained results of this reactor are compared with the NCT requirements. Although the presented design could potentially be a cheap reactor, there is uncertainty regarding the cost of the 242mAm fuel.