ANS is committed to advancing, fostering, and promoting the development and application of nuclear sciences and technologies to benefit society.
Explore the many uses for nuclear science and its impact on energy, the environment, healthcare, food, and more.
Explore membership for yourself or for your organization.
Conference Spotlight
2026 Annual Conference
May 31–June 3, 2026
Denver, CO|Sheraton Denver
Standards Program
The Standards Committee is responsible for the development and maintenance of voluntary consensus standards that address the design, analysis, and operation of components, systems, and facilities related to the application of nuclear science and technology. Find out What’s New, check out the Standards Store, or Get Involved today!
Latest Magazine Issues
Dec 2025
Jul 2025
Latest Journal Issues
Nuclear Science and Engineering
December 2025
Nuclear Technology
Fusion Science and Technology
November 2025
Latest News
Deep Fission to break ground this week
With about seven months left in the race to bring DOE-authorized test reactors on line by July 4, 2026, via the Reactor Pilot Program, Deep Fission has announced that it will break ground on its associated project on December 9 in Parsons, Kansas. It’s one of many companies in the program that has made significant headway in recent months.
Hyun Chul Lee, Chang Hyo Kim
Nuclear Science and Engineering | Volume 138 | Number 2 | June 2001 | Pages 192-204
Technical Paper | doi.org/10.13182/NSE01-A2209
Articles are hosted by Taylor and Francis Online.
This paper demonstrates that the analytic nodal method (ANM) solution to two-group (2-G) diffusion equations can be formulated in the same way as the nodal expansion method (NEM) solution, and thereby, the two most popular transverse integrated nodal method formulations can be integrated into a unified nodal method (UNM) formulation. For this purpose, the analytic solution, i.e., the combined homogeneous and particular solution, of transverse-integrated one-dimensional, 2-G diffusion equations is represented by an expansion of analytic basis functions while the expansion coefficients are obtained in the same way as the NEM. The advantages of the UNM formulation are then discussed. It is a stable method in itself so that it does not require approximate schemes to avoid the instability at the near-critical nodes. Because it does not introduce any approximate scheme in conjunction with the stability questions at the near-critical nodes, it is more accurate than the conventional ANM formulation in the case where the latter needs to introduce approximations. It is readily incorporated into a number of existing NEM production codes. These advantages are demonstrated in terms of numerical solutions of Nuclear Energy Agency Committee on Reactor Physics pressurized water reactor benchmark problems.