ANS is committed to advancing, fostering, and promoting the development and application of nuclear sciences and technologies to benefit society.
Explore the many uses for nuclear science and its impact on energy, the environment, healthcare, food, and more.
Explore membership for yourself or for your organization.
Conference Spotlight
Nuclear Energy Conference & Expo (NECX)
September 8–11, 2025
Atlanta, GA|Atlanta Marriott Marquis
Standards Program
The Standards Committee is responsible for the development and maintenance of voluntary consensus standards that address the design, analysis, and operation of components, systems, and facilities related to the application of nuclear science and technology. Find out What’s New, check out the Standards Store, or Get Involved today!
Latest Magazine Issues
Aug 2025
Jan 2025
Latest Journal Issues
Nuclear Science and Engineering
September 2025
Nuclear Technology
Fusion Science and Technology
August 2025
Latest News
Powering the future: How the DOE is fueling nuclear fuel cycle research and development
As global interest in nuclear energy surges, the United States must remain at the forefront of research and development to ensure national energy security, advance nuclear technologies, and promote international cooperation on safety and nonproliferation. A crucial step in achieving this is analyzing how funding and resources are allocated to better understand how to direct future research and development. The Department of Energy has spearheaded this effort by funding hundreds of research projects across the country through the Nuclear Energy University Program (NEUP). This initiative has empowered dozens of universities to collaborate toward a nuclear-friendly future.
Hyun Chul Lee, Chang Hyo Kim
Nuclear Science and Engineering | Volume 138 | Number 2 | June 2001 | Pages 192-204
Technical Paper | doi.org/10.13182/NSE01-A2209
Articles are hosted by Taylor and Francis Online.
This paper demonstrates that the analytic nodal method (ANM) solution to two-group (2-G) diffusion equations can be formulated in the same way as the nodal expansion method (NEM) solution, and thereby, the two most popular transverse integrated nodal method formulations can be integrated into a unified nodal method (UNM) formulation. For this purpose, the analytic solution, i.e., the combined homogeneous and particular solution, of transverse-integrated one-dimensional, 2-G diffusion equations is represented by an expansion of analytic basis functions while the expansion coefficients are obtained in the same way as the NEM. The advantages of the UNM formulation are then discussed. It is a stable method in itself so that it does not require approximate schemes to avoid the instability at the near-critical nodes. Because it does not introduce any approximate scheme in conjunction with the stability questions at the near-critical nodes, it is more accurate than the conventional ANM formulation in the case where the latter needs to introduce approximations. It is readily incorporated into a number of existing NEM production codes. These advantages are demonstrated in terms of numerical solutions of Nuclear Energy Agency Committee on Reactor Physics pressurized water reactor benchmark problems.