ANS is committed to advancing, fostering, and promoting the development and application of nuclear sciences and technologies to benefit society.
Explore the many uses for nuclear science and its impact on energy, the environment, healthcare, food, and more.
Explore membership for yourself or for your organization.
Conference Spotlight
2026 ANS Annual Conference
May 31–June 3, 2026
Denver, CO|Sheraton Denver
Latest Magazine Issues
Feb 2026
Jul 2025
Latest Journal Issues
Nuclear Science and Engineering
February 2026
Nuclear Technology
January 2026
Fusion Science and Technology
Latest News
Uranium prices reach highest level since February 2024
The end-of-January spot price for uranium was $94.28 per pound, according to uranium fuel provider Cameco. That was the highest spot price posted by the company since the $95.00 per pound it listed at the end of February 2024. Spot prices during 2025 ranged from a low of $64.23 per pound at the end of March to a high of $82.63 per pound at the end of September.
Hyun Chul Lee, Chang Hyo Kim
Nuclear Science and Engineering | Volume 138 | Number 2 | June 2001 | Pages 192-204
Technical Paper | doi.org/10.13182/NSE01-A2209
Articles are hosted by Taylor and Francis Online.
This paper demonstrates that the analytic nodal method (ANM) solution to two-group (2-G) diffusion equations can be formulated in the same way as the nodal expansion method (NEM) solution, and thereby, the two most popular transverse integrated nodal method formulations can be integrated into a unified nodal method (UNM) formulation. For this purpose, the analytic solution, i.e., the combined homogeneous and particular solution, of transverse-integrated one-dimensional, 2-G diffusion equations is represented by an expansion of analytic basis functions while the expansion coefficients are obtained in the same way as the NEM. The advantages of the UNM formulation are then discussed. It is a stable method in itself so that it does not require approximate schemes to avoid the instability at the near-critical nodes. Because it does not introduce any approximate scheme in conjunction with the stability questions at the near-critical nodes, it is more accurate than the conventional ANM formulation in the case where the latter needs to introduce approximations. It is readily incorporated into a number of existing NEM production codes. These advantages are demonstrated in terms of numerical solutions of Nuclear Energy Agency Committee on Reactor Physics pressurized water reactor benchmark problems.