ANS is committed to advancing, fostering, and promoting the development and application of nuclear sciences and technologies to benefit society.
Explore the many uses for nuclear science and its impact on energy, the environment, healthcare, food, and more.
Explore membership for yourself or for your organization.
Conference Spotlight
2026 ANS Annual Conference
May 31–June 3, 2026
Denver, CO|Sheraton Denver
Latest Magazine Issues
Feb 2026
Jul 2025
Latest Journal Issues
Nuclear Science and Engineering
February 2026
Nuclear Technology
January 2026
Fusion Science and Technology
Latest News
Uranium prices reach highest level since February 2024
The end-of-January spot price for uranium was $94.28 per pound, according to uranium fuel provider Cameco. That was the highest spot price posted by the company since the $95.00 per pound it listed at the end of February 2024. Spot prices during 2025 ranged from a low of $64.23 per pound at the end of March to a high of $82.63 per pound at the end of September.
C. C. Pain, C. R. E. de Oliveira, A. J. H. Goddard, A. P. Umpleby
Nuclear Science and Engineering | Volume 138 | Number 1 | May 2001 | Pages 78-95
Technical Paper | doi.org/10.13182/NSE138-78
Articles are hosted by Taylor and Francis Online.
Research on the incorporation of compressibility effects, for both the liquid and radiolytic gas phases, into the Finite Element Transient Criticality (FETCH) coupled neutronics/computational fluid dynamics code is described. The code has been developed to simulate criticality transients in multiphase media and is applied here to fissile solution transient criticality. The predicted fission and pressure transients obtained by the enhanced numerical model are benchmarked against the results from the SILENE series of experiments on criticality transients in uranium solutions. The amplitude and the form of the first pressure peak, following a step reactivity change, are well represented, and insight is gained into the form of subsequent pressure oscillations. An explanation is given on the absence of these oscillations in more energetic transients.