ANS is committed to advancing, fostering, and promoting the development and application of nuclear sciences and technologies to benefit society.
Explore the many uses for nuclear science and its impact on energy, the environment, healthcare, food, and more.
Explore membership for yourself or for your organization.
Conference Spotlight
2026 ANS Annual Conference
May 31–June 3, 2026
Denver, CO|Sheraton Denver
Latest Magazine Issues
Feb 2026
Jul 2025
Latest Journal Issues
Nuclear Science and Engineering
February 2026
Nuclear Technology
January 2026
Fusion Science and Technology
Latest News
Uranium prices reach highest level since February 2024
The end-of-January spot price for uranium was $94.28 per pound, according to uranium fuel provider Cameco. That was the highest spot price posted by the company since the $95.00 per pound it listed at the end of February 2024. Spot prices during 2025 ranged from a low of $64.23 per pound at the end of March to a high of $82.63 per pound at the end of September.
Anil K. Prinja, G. C. Pomraning
Nuclear Science and Engineering | Volume 137 | Number 3 | March 2001 | Pages 227-235
Technical Paper | doi.org/10.13182/NSE01-A2188
Articles are hosted by Taylor and Francis Online.
A generalized Fokker-Planck (GFP) model is introduced for application to the problem of the angular spreading of a broad beam of charged particles. This approach extends the classic Fokker-Planck (FP) approximation of the scattering operator to instances when the differential scattering cross section is not sufficiently forward peaked for the strict FP representation to be valid. Our previously developed (1 - )n-moments method is used to construct a truncated hierarchy of moment equations from the GFP and transport equations. For slab thicknesses that are small compared to the transport mean-free-path, the scalar flux is explicitly represented as a Taylor expansion in the depth variable for different truncation orders and for different orders of the generalized Fokker-Planck expansion. Numerical results indicate that the GFP method is a viable method for dealing with larger scattering angles than are possible with the classic FP approximation.