ANS is committed to advancing, fostering, and promoting the development and application of nuclear sciences and technologies to benefit society.
Explore the many uses for nuclear science and its impact on energy, the environment, healthcare, food, and more.
Explore membership for yourself or for your organization.
Conference Spotlight
2026 ANS Annual Conference
May 31–June 3, 2026
Denver, CO|Sheraton Denver
Standards Program
The Standards Committee is responsible for the development and maintenance of voluntary consensus standards that address the design, analysis, and operation of components, systems, and facilities related to the application of nuclear science and technology. Find out What’s New, check out the Standards Store, or Get Involved today!
Latest Magazine Issues
Dec 2025
Jul 2025
Latest Journal Issues
Nuclear Science and Engineering
January 2026
Nuclear Technology
December 2025
Fusion Science and Technology
November 2025
Latest News
AI at work: Southern Nuclear’s adoption of Copilot agents drives fleet forward
Southern Nuclear is leading the charge in artificial intelligence integration, with employee-developed applications driving efficiencies in maintenance, operations, safety, and performance.
The tools span all roles within the company, with thousands of documented uses throughout the fleet, including improved maintenance efficiency, risk awareness in maintenance activities, and better-informed decision-making. The data-intensive process of preparing for and executing maintenance operations is streamlined by leveraging AI to put the right information at the fingertips for maintenance leaders, planners, schedulers, engineers, and technicians.
Omar Chibani
Nuclear Science and Engineering | Volume 137 | Number 2 | February 2001 | Pages 215-225
Technical Paper | doi.org/10.13182/NSE01-A2187
Articles are hosted by Taylor and Francis Online.
A New Monte Carlo code (EBUF) is developed to calculate improved point isotropic photon exposure buildup factors in media. Variance reduction techniques are used to perform calculations up to 60 mean free paths. EBUF accounts for coherent scattering and bound-electron Compton scattering. Bremsstrahlung photons and annihilation gamma rays as well as K and L X-rays are considered. The most recent cross-section data are used. The EBUF exposure buildup factors compare very well with those from the ANS-6.4.3 Working Group (ANS-6.4.3) when the same initial conditions are assumed: no coherent scattering, free-electron Compton scattering, and only K X-ray fluorescence. Next, a detailed physics treatment is used to calculate a representative set of exposure buildup factors in aluminum, iron, lead, water, air, and concrete over a large energy range (20 keV to 10 MeV). The effects of L X-rays are shown for lead at low energy. The EBUF factors are in good agreement with the SN1D code results for low-Z media. Finally, total exposure values from EBUF and ANS-6.4.3 are compared. Quite significant differences are observed because the ANS-6.4.3 calculations do not account for binding effects in Compton scattering, L X-ray fluorescence, and coherent scattering in mixtures.