ANS is committed to advancing, fostering, and promoting the development and application of nuclear sciences and technologies to benefit society.
Explore the many uses for nuclear science and its impact on energy, the environment, healthcare, food, and more.
Explore membership for yourself or for your organization.
Conference Spotlight
Nuclear Energy Conference & Expo (NECX)
September 8–11, 2025
Atlanta, GA|Atlanta Marriott Marquis
Standards Program
The Standards Committee is responsible for the development and maintenance of voluntary consensus standards that address the design, analysis, and operation of components, systems, and facilities related to the application of nuclear science and technology. Find out What’s New, check out the Standards Store, or Get Involved today!
Latest Magazine Issues
Aug 2025
Jan 2025
Latest Journal Issues
Nuclear Science and Engineering
September 2025
Nuclear Technology
Fusion Science and Technology
August 2025
Latest News
Powering the future: How the DOE is fueling nuclear fuel cycle research and development
As global interest in nuclear energy surges, the United States must remain at the forefront of research and development to ensure national energy security, advance nuclear technologies, and promote international cooperation on safety and nonproliferation. A crucial step in achieving this is analyzing how funding and resources are allocated to better understand how to direct future research and development. The Department of Energy has spearheaded this effort by funding hundreds of research projects across the country through the Nuclear Energy University Program (NEUP). This initiative has empowered dozens of universities to collaborate toward a nuclear-friendly future.
Do Heon Kim, Hangbok Choi, Won Sik Yang, Jong Kyung Kim
Nuclear Science and Engineering | Volume 137 | Number 1 | January 2001 | Pages 23-37
Technical Paper | doi.org/10.13182/NSE01-A2173
Articles are hosted by Taylor and Francis Online.
The effect of DUPIC fuel composition heterogeneity on CANDU core performance was assessed for three candidate DUPIC fuel options: the fissile content adjustment method, reactivity control by slightly enriched and depleted uranium, and reactivity control by natural uranium. The fissile content adjustment method produces DUPIC fuel of fixed 235U and 239Pu contents, while the reactivity control method produces DUPIC fuel of uniform reactivity at the fresh condition. To assess the uncertainty of the core performance parameter associated with the isotopic variation, the sensitivity coefficients were generated by the generalized perturbation theory for the lattice parameter and zone controller level perturbations. The uncertainty was then estimated for three key core performance parameters: maximum channel power (MCP), maximum bundle power (MBP), and channel power peaking factor (CPPF). The fissile content adjustment method was shown to have a smaller uncertainty in the core performance parameter than with the reactivity control options. For the fissile content adjustment method, the average uncertainties of MCP, MBP, and CPPF were estimated to be 1.3, 2.5, and 1.2%, respectively, with 95% confidence level, when simulated for specified burnup points of the equilibrium core.