ANS is committed to advancing, fostering, and promoting the development and application of nuclear sciences and technologies to benefit society.
Explore the many uses for nuclear science and its impact on energy, the environment, healthcare, food, and more.
Explore membership for yourself or for your organization.
Conference Spotlight
Nuclear Energy Conference & Expo (NECX)
September 8–11, 2025
Atlanta, GA|Atlanta Marriott Marquis
Standards Program
The Standards Committee is responsible for the development and maintenance of voluntary consensus standards that address the design, analysis, and operation of components, systems, and facilities related to the application of nuclear science and technology. Find out What’s New, check out the Standards Store, or Get Involved today!
Latest Magazine Issues
Aug 2025
Jan 2025
Latest Journal Issues
Nuclear Science and Engineering
September 2025
Nuclear Technology
Fusion Science and Technology
August 2025
Latest News
Powering the future: How the DOE is fueling nuclear fuel cycle research and development
As global interest in nuclear energy surges, the United States must remain at the forefront of research and development to ensure national energy security, advance nuclear technologies, and promote international cooperation on safety and nonproliferation. A crucial step in achieving this is analyzing how funding and resources are allocated to better understand how to direct future research and development. The Department of Energy has spearheaded this effort by funding hundreds of research projects across the country through the Nuclear Energy University Program (NEUP). This initiative has empowered dozens of universities to collaborate toward a nuclear-friendly future.
Marc A. Cooper, Edward W. Larsen
Nuclear Science and Engineering | Volume 137 | Number 1 | January 2001 | Pages 1-13
Technical Paper | doi.org/10.13182/NSE00-34
Articles are hosted by Taylor and Francis Online.
A new method for efficiently solving global Monte Carlo particle transport problems is presented. (In these problems, flux information is desired across the entire system, not just at a small number of detector locations.) The method is based on the use of a weight window that distributes Monte Carlo particles uniformly throughout the system. This (a) ensures that all subregions of the system are adequately sampled and (b) controls the particle weights, even in subregions far from sources. The weight window is constructed from an approximate deterministic solution of the forward transport problem. It is argued that a weight window based on the forward transport solution is more appropriate for global problems than the more familiar concept of basing a weight window on an adjoint solution for source-detector problems. It is also shown that by using Monte Carlo-generated Eddington factors in deterministic solutions of the quasi-diffusion equation, one can inexpensively compute updated forward-based weight windows and obtain a more efficient global Monte Carlo calculation.