ANS is committed to advancing, fostering, and promoting the development and application of nuclear sciences and technologies to benefit society.
Explore the many uses for nuclear science and its impact on energy, the environment, healthcare, food, and more.
Explore membership for yourself or for your organization.
Conference Spotlight
Nuclear Energy Conference & Expo (NECX)
September 8–11, 2025
Atlanta, GA|Atlanta Marriott Marquis
Standards Program
The Standards Committee is responsible for the development and maintenance of voluntary consensus standards that address the design, analysis, and operation of components, systems, and facilities related to the application of nuclear science and technology. Find out What’s New, check out the Standards Store, or Get Involved today!
Latest Magazine Issues
Aug 2025
Jan 2025
Latest Journal Issues
Nuclear Science and Engineering
September 2025
Nuclear Technology
Fusion Science and Technology
August 2025
Latest News
Powering the future: How the DOE is fueling nuclear fuel cycle research and development
As global interest in nuclear energy surges, the United States must remain at the forefront of research and development to ensure national energy security, advance nuclear technologies, and promote international cooperation on safety and nonproliferation. A crucial step in achieving this is analyzing how funding and resources are allocated to better understand how to direct future research and development. The Department of Energy has spearheaded this effort by funding hundreds of research projects across the country through the Nuclear Energy University Program (NEUP). This initiative has empowered dozens of universities to collaborate toward a nuclear-friendly future.
Z. F. Kuang, I. Pázsit
Nuclear Science and Engineering | Volume 136 | Number 2 | October 2000 | Pages 305-319
Technical Note | doi.org/10.13182/NSE00-A2161
Articles are hosted by Taylor and Francis Online.
Recently, analytical formulas have been derived for the Feynman- and Rossi-Alpha measurements in accelerator-driven systems. In such systems, due to the multiplicity of the sources, the Feynman- and Rossi-Alpha formulas contain additional terms as compared with the traditional cases. A numerical evaluation of these formulas for systems with such sources is given. An assessment of the contribution of the terms that are novel as compared to the traditional formula is made. These include the terms arising from the source multiplicity, and the prompt-delayed and delayed-delayed correlations. Further, the consequences of averaging the delayed-neutron families are analyzed. Finally, a comparison is made, assuming traditional core material and one possible type of future accelerator-driven system.