ANS is committed to advancing, fostering, and promoting the development and application of nuclear sciences and technologies to benefit society.
Explore the many uses for nuclear science and its impact on energy, the environment, healthcare, food, and more.
Explore membership for yourself or for your organization.
Conference Spotlight
2026 ANS Annual Conference
May 31–June 3, 2026
Denver, CO|Sheraton Denver
Latest Magazine Issues
Feb 2026
Jul 2025
Latest Journal Issues
Nuclear Science and Engineering
February 2026
Nuclear Technology
January 2026
Fusion Science and Technology
Latest News
Uranium prices reach highest level since February 2024
The end-of-January spot price for uranium was $94.28 per pound, according to uranium fuel provider Cameco. That was the highest spot price posted by the company since the $95.00 per pound it listed at the end of February 2024. Spot prices during 2025 ranged from a low of $64.23 per pound at the end of March to a high of $82.63 per pound at the end of September.
John F. Carew, Kai Hu, Gabriel Zamonsky
Nuclear Science and Engineering | Volume 136 | Number 2 | October 2000 | Pages 282-293
Technical Paper | doi.org/10.13182/NSE99-96
Articles are hosted by Taylor and Francis Online.
Recently, a uniform equal-weight quadrature set, UEn, and a uniform Gauss-weight quadrature set, UGn, have been derived. These quadratures have the advantage over the standard level-symmetric LQn quadrature sets in that the weights are positive for all orders,and the transport solution may be systematically converged by increasing the order of the quadrature set. As the order of the quadrature is increased,the points approach a uniform continuous distribution on the unit sphere,and the quadrature is invariant with respect to spatial rotations. The numerical integrals converge for continuous functions as the order of the quadrature is increased.The numerical characteristics of the UEn quadrature set have been investigated previously. In this paper, numerical calculations are performed to evaluate the application of the UGn quadrature set in typical transport analyses. A series of DORT transport calculations of the >1-MeV neutron flux have been performed for a set of pressure-vessel fluence benchmark problems. These calculations employed the UGn (n = 8, 12, 16, 24, and 32) quadratures and indicate that the UGn solutions have converged to within ~0.25%. The converged UGn solutions are found to be comparable to the UEn results and are more accurate than the level-symmetric S16 predictions.