ANS is committed to advancing, fostering, and promoting the development and application of nuclear sciences and technologies to benefit society.
Explore the many uses for nuclear science and its impact on energy, the environment, healthcare, food, and more.
Explore membership for yourself or for your organization.
Conference Spotlight
2026 Annual Conference
May 31–June 3, 2026
Denver, CO|Sheraton Denver
Standards Program
The Standards Committee is responsible for the development and maintenance of voluntary consensus standards that address the design, analysis, and operation of components, systems, and facilities related to the application of nuclear science and technology. Find out What’s New, check out the Standards Store, or Get Involved today!
Latest Magazine Issues
Dec 2025
Jul 2025
Latest Journal Issues
Nuclear Science and Engineering
December 2025
Nuclear Technology
Fusion Science and Technology
November 2025
Latest News
Deep Fission to break ground this week
With about seven months left in the race to bring DOE-authorized test reactors on line by July 4, 2026, via the Reactor Pilot Program, Deep Fission has announced that it will break ground on its associated project on December 9 in Parsons, Kansas. It’s one of many companies in the program that has made significant headway in recent months.
John F. Carew, Kai Hu, Gabriel Zamonsky
Nuclear Science and Engineering | Volume 136 | Number 2 | October 2000 | Pages 282-293
Technical Paper | doi.org/10.13182/NSE99-96
Articles are hosted by Taylor and Francis Online.
Recently, a uniform equal-weight quadrature set, UEn, and a uniform Gauss-weight quadrature set, UGn, have been derived. These quadratures have the advantage over the standard level-symmetric LQn quadrature sets in that the weights are positive for all orders,and the transport solution may be systematically converged by increasing the order of the quadrature set. As the order of the quadrature is increased,the points approach a uniform continuous distribution on the unit sphere,and the quadrature is invariant with respect to spatial rotations. The numerical integrals converge for continuous functions as the order of the quadrature is increased.The numerical characteristics of the UEn quadrature set have been investigated previously. In this paper, numerical calculations are performed to evaluate the application of the UGn quadrature set in typical transport analyses. A series of DORT transport calculations of the >1-MeV neutron flux have been performed for a set of pressure-vessel fluence benchmark problems. These calculations employed the UGn (n = 8, 12, 16, 24, and 32) quadratures and indicate that the UGn solutions have converged to within ~0.25%. The converged UGn solutions are found to be comparable to the UEn results and are more accurate than the level-symmetric S16 predictions.