ANS is committed to advancing, fostering, and promoting the development and application of nuclear sciences and technologies to benefit society.
Explore the many uses for nuclear science and its impact on energy, the environment, healthcare, food, and more.
Explore membership for yourself or for your organization.
Conference Spotlight
2026 ANS Annual Conference
May 31–June 3, 2026
Denver, CO|Sheraton Denver
Latest Magazine Issues
Feb 2026
Jul 2025
Latest Journal Issues
Nuclear Science and Engineering
February 2026
Nuclear Technology
January 2026
Fusion Science and Technology
Latest News
Uranium prices reach highest level since February 2024
The end-of-January spot price for uranium was $94.28 per pound, according to uranium fuel provider Cameco. That was the highest spot price posted by the company since the $95.00 per pound it listed at the end of February 2024. Spot prices during 2025 ranged from a low of $64.23 per pound at the end of March to a high of $82.63 per pound at the end of September.
Chao Tian, Lifeng Sun, Chao Fang
Nuclear Science and Engineering | Volume 175 | Number 2 | October 2013 | Pages 204-211
Technical Paper | doi.org/10.13182/NSE12-51
Articles are hosted by Taylor and Francis Online.
In this paper, we discuss our study of the fission product diffusion process in TRISO fuel particles used in pebble bed high-temperature reactors (HTRs). Different from the previous numerical solution, the analytical solution of this diffusion process by variables separation was derived. It was also accessible to obtain the analytical expressions of the fission product concentration distribution C(t), the corresponding release fractions F(t), and the ratio of release and productive amounts R(t)/B(t) of fission products. Furthermore, to reduce the rounding errors, parameters mentioned in the diffusion equations were nondimensionalized, which made the result fairly reliable and credible. Since the analytical solutions are exact, many unnecessary assumptions and approximations in Booth's model are avoided. On the basis of HTR-10 design benchmark, the C(t), F(t), and R(t)/B(t) of 137Cs and 134Cs in TRISO fuel particles were calculated and then compared with the finite element solutions. The results show that analytical solutions are effective and consistent with the physical picture.