ANS is committed to advancing, fostering, and promoting the development and application of nuclear sciences and technologies to benefit society.
Explore the many uses for nuclear science and its impact on energy, the environment, healthcare, food, and more.
Explore membership for yourself or for your organization.
Conference Spotlight
2025 ANS Winter Conference & Expo
November 9–12, 2025
Washington, DC|Washington Hilton
Standards Program
The Standards Committee is responsible for the development and maintenance of voluntary consensus standards that address the design, analysis, and operation of components, systems, and facilities related to the application of nuclear science and technology. Find out What’s New, check out the Standards Store, or Get Involved today!
Latest Magazine Issues
Oct 2025
Jul 2025
Latest Journal Issues
Nuclear Science and Engineering
November 2025
Nuclear Technology
Fusion Science and Technology
October 2025
Latest News
Researchers use one-of-a-kind expertise and capabilities to test fuels of tomorrow
At the Idaho National Laboratory Hot Fuel Examination Facility, containment box operator Jake Maupin moves a manipulator arm into position around a pencil-thin nuclear fuel rod. He is preparing for a procedure that he and his colleagues have practiced repeatedly in anticipation of this moment in the hot cell.
G. Palmiotti, M. Salvatores, R. N. Hill
Nuclear Science and Engineering | Volume 117 | Number 4 | August 1994 | Pages 239-250
Technical Paper | doi.org/10.13182/NSE94-A21501
Articles are hosted by Taylor and Francis Online.
Time-dependent sensitivity techniques, which have been used in the past for standard reactor applications, are adapted to calculate the impact of data uncertainties and to estimate target data accuracies in radiotoxicity evaluations. The methodology is applied to different strategies of radioactive waste management connected with the European Fast Reactor and the Integral Fast Reactor fuel cycles. Results are provided in terms of sensitivity coefficients of basic data (cross sections and decay constants), uncertainties of global radiotoxicity at different times of storing after discharge, and target data accuracies needed to satisfy maximum uncertainty limits.