ANS is committed to advancing, fostering, and promoting the development and application of nuclear sciences and technologies to benefit society.
Explore the many uses for nuclear science and its impact on energy, the environment, healthcare, food, and more.
Explore membership for yourself or for your organization.
Conference Spotlight
2026 ANS Annual Conference
May 31–June 3, 2026
Denver, CO|Sheraton Denver
Latest Magazine Issues
Feb 2026
Jul 2025
Latest Journal Issues
Nuclear Science and Engineering
February 2026
Nuclear Technology
January 2026
Fusion Science and Technology
Latest News
Godzilla is helping ITER prepare for tokamak assembly
ITER employees stand by Godzilla, the most powerful commercially available industrial robot available. (Photo: ITER)
Many people are familiar with Godzilla as a giant reptilian monster that emerged from the sea off the coast of Japan, the product of radioactive contamination. These days, there is a new Godzilla, but it has a positive—and entirely fact-based—association with nuclear energy. This one has emerged inside the Tokamak Assembly Preparation Building of ITER in southern France.
Nobuhiro Yamamuro
Nuclear Science and Engineering | Volume 118 | Number 4 | December 1994 | Pages 249-259
Technical Paper | doi.org/10.13182/NSE94-A21495
Articles are hosted by Taylor and Francis Online.
An estimation of the production of long-lived radionuclides by neutron-induced reactions in potential fusion reactor materials is very important for the development of low-activation materials. Although some measured data of activation cross sections leading to long-lived radioactive nuclides are available, the development of a calculation capability is necessary to provide complete excitation functions of the reactions involved. Calculations are not generally effective when experimental data to determine the parameters used in the model calculation are limited. In the SINCROS-II system, the consistency of the method of calculation is respected, and the parameters used are cross-checked by the available experimental data and the systematic trend of the calculated results. Thus, the SINCROS-II is expected to predict the activation cross sections with good accuracy, even if the cross section is calculated for a radioactive target nucleus. As an example of the cross-section predictions, the activation cross-section calculations are presented up to 20 MeV for neutron-induced production of long-lived radioactive nuclides 60Co, 59Ni, 63Ni, 91Nb, 94Nb, 93Mo, 99Mo, 108mAg, 150mEu, 152Eu, 158Tb, and 186mRe.