ANS is committed to advancing, fostering, and promoting the development and application of nuclear sciences and technologies to benefit society.
Explore the many uses for nuclear science and its impact on energy, the environment, healthcare, food, and more.
Explore membership for yourself or for your organization.
Conference Spotlight
Nuclear Energy Conference & Expo (NECX)
September 8–11, 2025
Atlanta, GA|Atlanta Marriott Marquis
Standards Program
The Standards Committee is responsible for the development and maintenance of voluntary consensus standards that address the design, analysis, and operation of components, systems, and facilities related to the application of nuclear science and technology. Find out What’s New, check out the Standards Store, or Get Involved today!
Latest Magazine Issues
Aug 2025
Jan 2025
Latest Journal Issues
Nuclear Science and Engineering
September 2025
Nuclear Technology
Fusion Science and Technology
August 2025
Latest News
Powering the future: How the DOE is fueling nuclear fuel cycle research and development
As global interest in nuclear energy surges, the United States must remain at the forefront of research and development to ensure national energy security, advance nuclear technologies, and promote international cooperation on safety and nonproliferation. A crucial step in achieving this is analyzing how funding and resources are allocated to better understand how to direct future research and development. The Department of Energy has spearheaded this effort by funding hundreds of research projects across the country through the Nuclear Energy University Program (NEUP). This initiative has empowered dozens of universities to collaborate toward a nuclear-friendly future.
J. E. Morel, J. M. McGhee
Nuclear Science and Engineering | Volume 116 | Number 2 | February 1994 | Pages 73-85
Technical Paper | doi.org/10.13182/NSE94-A21484
Articles are hosted by Taylor and Francis Online.
A synthetic scheme for accelerating the convergence of the fission source in time-dependent multigroup even-parity Sn calculations with downscatter is described. The low-order operator associated with this scheme is a one-group diffusion operator. Thus, this scheme can be thought of as a variant of diffusion synthetic acceleration. A Fourier analysis of this scheme is performed, which indicates that it is unconditionally effective for a spatially infinite model problem. Computational results are presented that show excellent performance of the method in three-dimensional calculations. Although this method is derived for the even-parity Sn equations, it can easily be generalized for application to the standard first-order Sn equations. The accelerated iteration equations for both the even-parity and first-order Sn equations are given, but only the even-parity algorithm is computationally tested.