ANS is committed to advancing, fostering, and promoting the development and application of nuclear sciences and technologies to benefit society.
Explore the many uses for nuclear science and its impact on energy, the environment, healthcare, food, and more.
Explore membership for yourself or for your organization.
Conference Spotlight
2026 Annual Conference
May 31–June 3, 2026
Denver, CO|Sheraton Denver
Standards Program
The Standards Committee is responsible for the development and maintenance of voluntary consensus standards that address the design, analysis, and operation of components, systems, and facilities related to the application of nuclear science and technology. Find out What’s New, check out the Standards Store, or Get Involved today!
Latest Magazine Issues
Dec 2025
Jul 2025
Latest Journal Issues
Nuclear Science and Engineering
December 2025
Nuclear Technology
Fusion Science and Technology
November 2025
Latest News
Deep Fission to break ground this week
With about seven months left in the race to bring DOE-authorized test reactors on line by July 4, 2026, via the Reactor Pilot Program, Deep Fission has announced that it will break ground on its associated project on December 9 in Parsons, Kansas. It’s one of many companies in the program that has made significant headway in recent months.
Y. Ikeda, E. T. Cheng, C. Konno, H. Maekawa
Nuclear Science and Engineering | Volume 116 | Number 1 | January 1994 | Pages 28-34
Technical Paper | doi.org/10.13182/NSE94-A21478
Articles are hosted by Taylor and Francis Online.
The activation cross sections for the 99Tc(n,p)99Mo, 99Tc(n,α)96Nb, 99Tc(n,n′α)95Nb, and“Tc(n,n′)99mTc reactions at 13.5 and 14.8 MeV have been measured by using the deuterium-tritium neutron generator (the Fusion Neutronics Source) at the Japan Atomic Energy Research Institute. The results were compared with experimental values from the literature, evaluated activation cross-section files, and predictions by current cross-section computer codes. Special emphasis was placed on the feasibility of producing high-specific-activity“Mo, to be used in medical applications, via the 99Tc(n,p)99Mo reaction in the Fusion Material Irradiation Facility. A factor of 3 overestimate of 99Mo production resulted when the REAC *2 code was used. It is suggested that this discrepancy is due primarily to the factor of 5 difference in cross sections at the 14-MeV region between the REAC*2 data and the current measurement.