ANS is committed to advancing, fostering, and promoting the development and application of nuclear sciences and technologies to benefit society.
Explore the many uses for nuclear science and its impact on energy, the environment, healthcare, food, and more.
Division Spotlight
Fuel Cycle & Waste Management
Devoted to all aspects of the nuclear fuel cycle including waste management, worldwide. Division specific areas of interest and involvement include uranium conversion and enrichment; fuel fabrication, management (in-core and ex-core) and recycle; transportation; safeguards; high-level, low-level and mixed waste management and disposal; public policy and program management; decontamination and decommissioning environmental restoration; and excess weapons materials disposition.
Meeting Spotlight
International Conference on Mathematics and Computational Methods Applied to Nuclear Science and Engineering (M&C 2025)
April 27–30, 2025
Denver, CO|The Westin Denver Downtown
Standards Program
The Standards Committee is responsible for the development and maintenance of voluntary consensus standards that address the design, analysis, and operation of components, systems, and facilities related to the application of nuclear science and technology. Find out What’s New, check out the Standards Store, or Get Involved today!
Latest Magazine Issues
Apr 2025
Jan 2025
Latest Journal Issues
Nuclear Science and Engineering
June 2025
Nuclear Technology
Fusion Science and Technology
May 2025
Latest News
Argonne’s METL gears up to test more sodium fast reactor components
Argonne National Laboratory has successfully swapped out an aging cold trap in the sodium test loop called METL (Mechanisms Engineering Test Loop), the Department of Energy announced April 23. The upgrade is the first of its kind in the United States in more than 30 years, according to the DOE, and will help test components and operations for the sodium-cooled fast reactors being developed now.
Y. Ikeda, E. T. Cheng, C. Konno, H. Maekawa
Nuclear Science and Engineering | Volume 116 | Number 1 | January 1994 | Pages 28-34
Technical Paper | doi.org/10.13182/NSE94-A21478
Articles are hosted by Taylor and Francis Online.
The activation cross sections for the 99Tc(n,p)99Mo, 99Tc(n,α)96Nb, 99Tc(n,n′α)95Nb, and“Tc(n,n′)99mTc reactions at 13.5 and 14.8 MeV have been measured by using the deuterium-tritium neutron generator (the Fusion Neutronics Source) at the Japan Atomic Energy Research Institute. The results were compared with experimental values from the literature, evaluated activation cross-section files, and predictions by current cross-section computer codes. Special emphasis was placed on the feasibility of producing high-specific-activity“Mo, to be used in medical applications, via the 99Tc(n,p)99Mo reaction in the Fusion Material Irradiation Facility. A factor of 3 overestimate of 99Mo production resulted when the REAC *2 code was used. It is suggested that this discrepancy is due primarily to the factor of 5 difference in cross sections at the 14-MeV region between the REAC*2 data and the current measurement.