ANS is committed to advancing, fostering, and promoting the development and application of nuclear sciences and technologies to benefit society.
Explore the many uses for nuclear science and its impact on energy, the environment, healthcare, food, and more.
Explore membership for yourself or for your organization.
Conference Spotlight
2026 ANS Annual Conference
May 31–June 3, 2026
Denver, CO|Sheraton Denver
Standards Program
The Standards Committee is responsible for the development and maintenance of voluntary consensus standards that address the design, analysis, and operation of components, systems, and facilities related to the application of nuclear science and technology. Find out What’s New, check out the Standards Store, or Get Involved today!
Latest Magazine Issues
Dec 2025
Jul 2025
Latest Journal Issues
Nuclear Science and Engineering
January 2026
Nuclear Technology
December 2025
Fusion Science and Technology
November 2025
Latest News
AI at work: Southern Nuclear’s adoption of Copilot agents drives fleet forward
Southern Nuclear is leading the charge in artificial intelligence integration, with employee-developed applications driving efficiencies in maintenance, operations, safety, and performance.
The tools span all roles within the company, with thousands of documented uses throughout the fleet, including improved maintenance efficiency, risk awareness in maintenance activities, and better-informed decision-making. The data-intensive process of preparing for and executing maintenance operations is streamlined by leveraging AI to put the right information at the fingertips for maintenance leaders, planners, schedulers, engineers, and technicians.
Y. Ikeda, E. T. Cheng, C. Konno, H. Maekawa
Nuclear Science and Engineering | Volume 116 | Number 1 | January 1994 | Pages 28-34
Technical Paper | doi.org/10.13182/NSE94-A21478
Articles are hosted by Taylor and Francis Online.
The activation cross sections for the 99Tc(n,p)99Mo, 99Tc(n,α)96Nb, 99Tc(n,n′α)95Nb, and“Tc(n,n′)99mTc reactions at 13.5 and 14.8 MeV have been measured by using the deuterium-tritium neutron generator (the Fusion Neutronics Source) at the Japan Atomic Energy Research Institute. The results were compared with experimental values from the literature, evaluated activation cross-section files, and predictions by current cross-section computer codes. Special emphasis was placed on the feasibility of producing high-specific-activity“Mo, to be used in medical applications, via the 99Tc(n,p)99Mo reaction in the Fusion Material Irradiation Facility. A factor of 3 overestimate of 99Mo production resulted when the REAC *2 code was used. It is suggested that this discrepancy is due primarily to the factor of 5 difference in cross sections at the 14-MeV region between the REAC*2 data and the current measurement.