ANS is committed to advancing, fostering, and promoting the development and application of nuclear sciences and technologies to benefit society.
Explore the many uses for nuclear science and its impact on energy, the environment, healthcare, food, and more.
Explore membership for yourself or for your organization.
Conference Spotlight
2026 ANS Annual Conference
May 31–June 3, 2026
Denver, CO|Sheraton Denver
Latest Magazine Issues
Feb 2026
Jul 2025
Latest Journal Issues
Nuclear Science and Engineering
February 2026
Nuclear Technology
January 2026
Fusion Science and Technology
Latest News
Industry Update—February 2026
Here is a recap of recent industry happenings:
Supply chain contract signed for Aurora
Oklo, the California-based developer of the Aurora Powerhouse sodium-cooled fast-neutron reactor, has signed a contract with Siemens Energy that is meant to de-risk supply chain and production timeline challenges for Oklo. Under the terms, Siemens will design and deliver the power conversion system for the Powerhouse, which is to be deployed at Idaho National Laboratory.
Masahiro Kinoshita, Yuji Naruse
Nuclear Science and Engineering | Volume 82 | Number 4 | December 1982 | Pages 469-475
Technical Note | doi.org/10.13182/NSE82-A21461
Articles are hosted by Taylor and Francis Online.
This Note reports remarkable improvements in the previously reported mathematical model for multi-component separating cascades, which are applicable to the cases where the interstage flows and the stage separation factors are input variables for the calculations. The number of the independent variables is greatly decreased for much more efficient iterative calculations by the multidimensional Newton-Raphson method. Particularly, if the stage separation factors are independent of concentrations of the up and down streams, the improved model presents great decreases both in the computation time needed at each iterative step and in the number of total iterations. Several numerical experiments made for a five-component system of N2-O2-41 Ar-85Kr-133Xe, which are separated by using the porous membrane method, indicate that the total computation time is shortened by almost two orders of magnitude if the improved model is used.