ANS is committed to advancing, fostering, and promoting the development and application of nuclear sciences and technologies to benefit society.
Explore the many uses for nuclear science and its impact on energy, the environment, healthcare, food, and more.
Division Spotlight
Fusion Energy
This division promotes the development and timely introduction of fusion energy as a sustainable energy source with favorable economic, environmental, and safety attributes. The division cooperates with other organizations on common issues of multidisciplinary fusion science and technology, conducts professional meetings, and disseminates technical information in support of these goals. Members focus on the assessment and resolution of critical developmental issues for practical fusion energy applications.
Meeting Spotlight
International Conference on Mathematics and Computational Methods Applied to Nuclear Science and Engineering (M&C 2025)
April 27–30, 2025
Denver, CO|The Westin Denver Downtown
Standards Program
The Standards Committee is responsible for the development and maintenance of voluntary consensus standards that address the design, analysis, and operation of components, systems, and facilities related to the application of nuclear science and technology. Find out What’s New, check out the Standards Store, or Get Involved today!
Latest Magazine Issues
Apr 2025
Jan 2025
Latest Journal Issues
Nuclear Science and Engineering
June 2025
Nuclear Technology
Fusion Science and Technology
May 2025
Latest News
Argonne’s METL gears up to test more sodium fast reactor components
Argonne National Laboratory has successfully swapped out an aging cold trap in the sodium test loop called METL (Mechanisms Engineering Test Loop), the Department of Energy announced April 23. The upgrade is the first of its kind in the United States in more than 30 years, according to the DOE, and will help test components and operations for the sodium-cooled fast reactors being developed now.
Masahiro Kinoshita, Yuji Naruse
Nuclear Science and Engineering | Volume 82 | Number 4 | December 1982 | Pages 469-475
Technical Note | doi.org/10.13182/NSE82-A21461
Articles are hosted by Taylor and Francis Online.
This Note reports remarkable improvements in the previously reported mathematical model for multi-component separating cascades, which are applicable to the cases where the interstage flows and the stage separation factors are input variables for the calculations. The number of the independent variables is greatly decreased for much more efficient iterative calculations by the multidimensional Newton-Raphson method. Particularly, if the stage separation factors are independent of concentrations of the up and down streams, the improved model presents great decreases both in the computation time needed at each iterative step and in the number of total iterations. Several numerical experiments made for a five-component system of N2-O2-41 Ar-85Kr-133Xe, which are separated by using the porous membrane method, indicate that the total computation time is shortened by almost two orders of magnitude if the improved model is used.