ANS is committed to advancing, fostering, and promoting the development and application of nuclear sciences and technologies to benefit society.
Explore the many uses for nuclear science and its impact on energy, the environment, healthcare, food, and more.
Division Spotlight
Radiation Protection & Shielding
The Radiation Protection and Shielding Division is developing and promoting radiation protection and shielding aspects of nuclear science and technology — including interaction of nuclear radiation with materials and biological systems, instruments and techniques for the measurement of nuclear radiation fields, and radiation shield design and evaluation.
Meeting Spotlight
International Conference on Mathematics and Computational Methods Applied to Nuclear Science and Engineering (M&C 2025)
April 27–30, 2025
Denver, CO|The Westin Denver Downtown
Standards Program
The Standards Committee is responsible for the development and maintenance of voluntary consensus standards that address the design, analysis, and operation of components, systems, and facilities related to the application of nuclear science and technology. Find out What’s New, check out the Standards Store, or Get Involved today!
Latest Magazine Issues
Apr 2025
Jan 2025
Latest Journal Issues
Nuclear Science and Engineering
June 2025
Nuclear Technology
Fusion Science and Technology
May 2025
Latest News
Argonne’s METL gears up to test more sodium fast reactor components
Argonne National Laboratory has successfully swapped out an aging cold trap in the sodium test loop called METL (Mechanisms Engineering Test Loop), the Department of Energy announced April 23. The upgrade is the first of its kind in the United States in more than 30 years, according to the DOE, and will help test components and operations for the sodium-cooled fast reactors being developed now.
P. Barbucci, F. Di Pasquantonio
Nuclear Science and Engineering | Volume 82 | Number 4 | December 1982 | Pages 448-457
Technical Note | doi.org/10.13182/NSE82-A21458
Articles are hosted by Taylor and Francis Online.
An evaluation of the computational efficiency of some spatial discretization schemes has been carried out on a number of slab geometry problems of interest in the shielding field. The achievable accuracy for a given cost of the calculation was compared, taking into account that the actual cost depends on both the computing time and the storage required and using as an error measure the ratio to the “reference solution” for a global quantity like the dose rate or the fast flux. The examined cases include neutron calculations in water, concrete, and steel slabs and, in a pressurized water reactor system, the photon calculations in a lead slab. The main conclusion of the study is that, for a given cost, the exponential scheme supplies solutions more accurate than those of the linear characteristic scheme or, at least, of the same quality.